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Abstract
We are studying how people perceive naturalistic suprathreshold changes in the colour, size, shape or loca-
tion of items in images of natural scenes, using magnitude estimation ratings to characterise the sizes of the
perceived changes in coloured photographs. We have implemented a computational model that tries to ex-
plain observers’ ratings of these naturalistic differences between image pairs. We model the action-potential
firing rates of millions of neurons, having linear and non-linear summation behaviour closely modelled on
real V1 neurons. The numerical parameters of the model’s sigmoidal transducer function are set by op-
timising the same model to experiments on contrast discrimination (contrast ‘dippers’) on monochrome
photographs of natural scenes. The model, optimised on a stimulus-intensity domain in an experiment rem-
iniscent of the Weber–Fechner relation, then produces tolerable predictions of the ratings for most kinds
of naturalistic image change. Importantly, rating rises roughly linearly with the model’s numerical output,
which represents differences in neuronal firing rate in response to the two images under comparison; this
implies that rating is proportional to the neuronal response.
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1. Introduction

Fechner and Weber suggested that, in many sensory domains, there is a geometric
scale of sensory intensity perception and that this might arise from a compressive
relation between neuronal response magnitude and stimulus intensity (Murray and
Ross, 1988; Ross, 1995). These pioneering psychophysical ideas may not have led
to a perfect unifying Law of Sensation (Stevens, 1961) but the proposals about psy-
chophysical magnitude discriminations have underlain many of the important and
testable comparisons between psychophysical performance and single neuron sen-
sory physiology. Fechner and Weber might have supposed that ‘delta-C is directly
proportional to C’, implying a logarithmic transducer function between neuronal
response and contrast, but careful psychophysical measurements have suggested
other compressive transducer shapes, and explanations have been sought in the ac-
tual behaviour of sensory neurons. This has been especially the case for the study
of sinewave grating contrast discrimination (Boynton et al., 1999; Chirimuuta and
Tolhurst, 2005a; Foley, 1994; Goris et al., 2009; Legge and Foley, 1980; Watson
and Solomon, 1997). Measurements of how visual neurons respond to contrast (Al-
brecht and Hamilton, 1982; Heeger et al., 2000; Sclar et al., 1990; Tolhurst et al.,
1981, 1983) can inspire quantitative models of how a whole organism discriminates
contrast stimuli (Watson and Solomon, 1997). In this paper, we extend such ideas
to consider how the responses of visual cortex neurons to simple stimuli can help
us understand how people perceive changes in natural images.

Since the earliest electrophysiological recordings of the responses of sensory
neurons and the discovery that intensity is coded as action potential frequency
(Adrian and Zotterman, 1926), it has been an important question how neuronal
response properties relate to human psychophysical performance (e.g., Barlow and
Levick, 1969; Borg et al., 1966; Parker and Newsome, 1998; Werner and Mount-
castle, 1965). The way that neuronal response depends upon stimulus intensity has
been of particular interest, since it bears direct comparison with the well formu-
lated psychophysical ideas of Fechner and Weber (e.g., Chirimuuta and Tolhurst,
2005a, b; Tolhurst et al., 1983, 1989; Werner and Mountcastle, 1965). As early as
1931, B. H. C. Matthews studied the muscle spindle (a receptor which increases its
activity when the muscle is stretched) and he reported: ‘If the frequency [of action
potential firing]. . . be plotted against the logarithm of the load, the points lie very
nearly on a straight line. . . . It has long been held that, as a stimulus increases in
geometric progression, the sensation increases in arithmetic progression (Fechner’s
Law)’. That is, he suggested that the logarithmic relation between response and load
(i.e., the tension in the muscle’s tendon) might underlie Fechner’s Law of Sensa-
tion. While this looks like a pleasingly straightforward relation between neuronal
behaviour and psychophysical performance, the observation points to a number of
complications in trying to compare overall psychophysical performance with the
behaviour of single neurons.
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1.1. What Is the Appropriate Measure and Range of Stimulus Intensity?

The later study of the muscle spindle (P. B. C. Matthews, 1972) illustrates impor-
tant caveats in the search for Laws of sensory coding or perception. First, it turns
out that the response of the muscle spindle is determined by muscle length and not
by tension, and it also turns out that tension is logarithmically related to length.
Thus, response is actually linearly proportional to length, the appropriate measure
of stimulus intensity in this case. In trying to deduce relations between neuronal
response or psychophysical magnitude estimation and stimulus intensity (Stevens,
1961), it is clearly important to understand what system of measurement is appro-
priate for the stimulus intensity. Indeed, it may sometimes be the case (as in our
present study) that there is no obvious single-dimensional metric to use.

The behaviour of the muscle spindle illustrates a second caveat: while it is a
valid experimental strategy to study a system under the widest range of conditions,
it should be noted when, in everyday life, that system is subject to only limited parts
of the potential range. It is important to recognise the natural intensity range and
to ask whether the system’s behaviour is the same within the natural range as it is
overall. Muscle spindle response is linearly proportional to muscle length (as said
above), but only for very small stretches. While this seems, at first, to lessen any
interest in a linear response range, it is compatible with the observation that, in situ,
the length of a muscle is actually able to change rather little (about 5–10%), even
though the joints be fully flexed or fully extended.

In this paper, we study human perception of naturalistic changes in digitised
photographs of everyday scenes: i.e., natural images. In vision, we may be ex-
posed at different times to stimuli that vary by many log units in intensity (mostly
at different times of day). Stevens (1961) found that the power law relation be-
tween psychophysical magnitude and stimulus intensity for bright spots had an
exponent of about 0.33 over a large range of intensities. However, when viewing
natural scenes, the range of intensities in any one scene is much more modest.
More generally, it is a tenet of vision science that the appropriate measure of stim-
ulus intensity should be contrast, a measure of the intensity of an object relative
to the average level (Enroth-Cugell and Robson, 1966; Troy and Enroth-Cugell,
1993) and, in a typical natural scene, the contrast is mostly low and ranges over
only 2 log units (Brady and Field, 2000; Clatworthy et al., 2003; Lauritzen and
Tolhurst, 2005). The relation between perceived magnitude and contrast has a dif-
ferent power (0.65–1.0) from that reported by Stevens for intensity (Biondini and
De Martelli, 1985; Cannon, 1979; Gottesman et al., 1981; Peli et al., 1991). It has
also been questioned whether the appropriate metric might actually be contrast en-
ergy, the contrast squared (Solomon, 2009). As with the example of the muscle
spindle, this visual example shows the importance of considering the appropriate
intensity metric and a natural range of stimuli.

Simply equating neuronal response magnitude with the substrate for human mag-
nitude estimates raises a third caveat. It is well accepted that human detection
thresholds or intensity discrimination limens involve statistical judgments about
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changes in an ‘internal variable’ (Green and Swets, 1966). It is a common observa-
tion in sensory neurophysiology that neuronal response variability (or ‘noise’) in-
creases with response magnitude and presumably with stimulus intensity (Matthews
and Stein, 1969; Tolhurst et al., 1981, 1983, 2009; Werner and Mountcastle, 1965).
Any model of how psychophysical judgments depend upon neuronal behaviour
should include knowledge not only of how neuronal response magnitudes depend
upon intensity, but also of how the ‘response noise’ changes (we shall consider this
point in the Discussion).

1.2. Is a Single-Neuron Model Appropriate?

While it is attractive that overall psychophysical performance seems to relate to the
response-intensity relations of single sensory neurons, it is obviously the case that
neurons will not be active in isolation: overall performance must be the result of
activity in many (probably disparate) neurons. Take, for instance, Weber’s classical
experiment on the ability to discriminate the weights of objects (Brodie and Ross,
1984). Suppose that we hold our upper arms by our sides, our forearms horizontally
with our palms upright and that we hold two different weights on our two palms.
It may be that there are muscle spindles (compare B. H. C. Matthews, 1931) in the
biceps whose stretch and responses will depend on the weights on the palms. How-
ever, there are very many different kinds of sensory receptor in the arm (including
the elbow or wrist), which must surely be involved (spindles in fore-arm and upper-
arm muscles, receptors in joints, and pressure receptors in the skin of the hand).
The magnitude of response given by a muscle spindle in response to a given stretch
also depends upon efferent outflow from the nervous system and is affected by the
amount of force needed to keep the forearms horizontal (P. B. C. Matthews, 1972).
Finally, it is likely that judgements about the relative weights in the two hands will
involve some deliberate ‘testing’ motor activity, determining how much extra force
is needed to lift the objects a small distance (Brodie and Ross, 1984). In all, the
neural activity is complex and disparate even for a ‘simple’ judgement of which of
two stimuli is the more intense. How much more complex when the stimuli vary in
multiple dimensions that are not easy to quantify individually?

A true picture of how perceptual magnitude relates to neural responses requires
a comprehensive description of the individual contributions of all the disparate sen-
sory signals involved, and hypotheses about how those many signals are weighted
and combined to give a single judgement. In fact, just such an enterprise has been
ongoing for 25 years in vision science (Daly, 1993; Foley, 1994; Lovell et al., 2006;
Lubin, 1995; Parraga et al., 2005; To et al., 2009, 2010; Watson, 1987; Watson
and Ahumada, 2005; Watson and Solomon, 1997). Using the immense amount of
quantitative data on single V1 neuron responses and human channel behaviour, it
has been possible to build computational models of how millions of neurons re-
spond to visual stimuli, and then to compute how the population behaviour differs
in response to different stimuli. Such models are used to understand the neural con-
tributions to ‘simple’ decisions about stimulus contrast (an intensity metric in the



D. J. Tolhurst et al. / Seeing and Perceiving 23 (2010) 349–372 353

line of Weber and Fechner), and they have also been used as the basis of image
quality metrics to describe the degree of perceived corruption in images that have
been subject, say, to JPEG compression (e.g., Daly, 1993; Lubin, 1995).

We have been investigating human suprathreshold perception of changes in nat-
ural images (To et al., 2008, 2009, 2010): e.g., changes in the shapes, colours or
numbers of objects in a scene. The great variety of image changes in our experi-
ments (e.g., changes in hue, blur, object size or posture, number of objects in view)
means that there is no obvious single physical stimulus metric against which we
can compare the observers’ ratings to all those change types, separately or in com-
bination; a model of the responses of millions of V1 neurons is an attempt to unify
the data. In this paper, we shall examine whether such a model helps us to under-
stand the relationship between psychophysical judgements and neural population
response for suprathreshold changes in natural visual images. We have already ap-
plied a V1-based model to the results of a ratings experiment with a disparate set
of images constructed with an unsystematically chosen variety of image changes
(To et al., 2010); we argued that some of those image changes (e.g., changes in
facial expression) might not be amenable solely to V1 modelling. Here, we ex-
tend the V1 modelling to show explicitly how a single model with few parameters
can link ‘classical’ psychophysical experiments on contrast discrimination (‘dipper’
functions with sinewave gratings) to our experiments which measure the perceived
magnitudes of changes in, for example, the shapes, colours, locations and numbers
of objects in natural scenes. We shall discuss how the ‘transducer function’ (Legge
and Foley, 1980), which we model as underlying the dipper function, is related to
the population response of V1 neurons. We ask particularly whether the model gives
a straight-line fit to our ratings data on natural image differences. We concentrate
on a newer set of experimental results, obtained with stimuli in which the various
changes (e.g., in object size, location and colour) are systematically changed (sep-
arately and in combination) to provide a well-distributed range of rating data to
challenge the model.

2. Methods

2.1. Coloured Natural Image Stimuli and Magnitude Estimate Ratings

Our methods for constructing and presenting stimuli are given in detail by To et al.
(2008, 2010).

In a first experiment (To et al., 2008), 294 image pairs were made from a small
number of parent images. Six parent images led to 48 variants each. An image could
differ from the parent along one dimension, along a second dimension or along both
together. Including ‘no change’, there were 7 steps along each dimension (the steps
were intended to be of equal perceptual magnitude), giving 7 × 7 variants in total.
Variants could differ in the locations of objects within the image (e.g., Fig. 1A, B),
the sizes or colours of objects, or in the intensity of shadows (Fig. 1B). The 294
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Figure 1. Monochrome representations of some of the kinds of image pair used in our experiments.
(A) and (B) from the ‘garden scene’ series. The left-hand images show two of the parent images
in the experiments, while the middle and right-hand images show variant images against which the
parents could be compared. There were 48 variants of each. (A) Shows two variants that differ in the
magnitude of a single change type, while (B) shows variants that differ in 2 different ways. (C–E) From
the ‘varied pairs’ series; the upper stimulus is the parent, and the lower image is one of 5 variants in the
experiments. (C) Shows a colour change; (D) shows a shape change; (E) shows an item disappearing.
The ‘colour change’ was achieved by changing the hue and the saturation of one banana, using code
written in Matlab (The Mathworks). ‘Shape’ and ‘appearance’ changes used time-lapse photography.
For details and coloured examples, see To et al. (2008, 2010).
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images could be presented upright or inverted, in random order, giving 588 pairs
altogether. We have not previously applied a V1-based model to these data.

In a second experiment (To et al., 2010), 900 pairs of images were made from
a wide variety of coloured photographs of natural scenes, covering subject matter
such as animals, plants, people, man-made objects, landscapes, still-lifes and gar-
den scenes. Some image pairs could be made by taking one natural photograph and
using some kind of image processing technique to change the colour (hue and/or
saturation) of all or part of the scene (e.g., Fig. 1C; coloured examples are given
in To et al., 2008). Images could also be blurred or sharpened. Many image pairs
were made from a pair of photographs of the same scene. In the time between pho-
tographs, the shape or arrangement of objects in the scene may have changed (e.g.,
Fig. 1D), or an object may have appeared or disappeared (e.g., Fig. 1E), or the nat-
ural lighting and shadowing may have changed due to change in the time of day or
the weather. Some image pairs were made by combining the natural shape changes
with image-processed colour or blur changes. There were 180 parent images, each
paired against 5 variants.

The images were 256 by 256 pixels, 3.2 deg square surrounded by uniform grey
in a larger display. The stimuli were presented through a ViSaGe system (Cam-
bridge Research Systems) so that we had precise control and knowledge of the
luminance of each pixel. In a given trial, the observer had to compare two related
images; one was a parent image and the other was a variant of it. The observer
viewed a small spot in the centre of the display, and then the images in a pair were
presented sequentially. The first image was presented for 833 ms followed by a
83 ms interval when the screen was uniform grey apart from the fixation spot. The
second image was then presented for 833 ms, followed by a 83 ms grey interval
and a 833 ms re-presentation of the first image. The fixation spot was extinguished
while the images were present, but the observers were instructed to view the centre
of the images and not move their gaze about. The observer then gave a numerical
rating of the perceived difference between the images. Every 10 trials, one partic-
ular image pair was presented (a picture of a red flower where the difference was
in colour saturation); the numerical difference between this standard pair was set to
‘20’, and observers were instructed and trained to use a ratio scale to rate any kind
of difference in any other image pair with respect to this standard. The observers
were sometimes surprised by this instruction at first, but after a little practice, they
mostly reported being very comfortable with the idea that they could rate any per-
ceived change against, say, a colour saturation change. However, this does raise
the question whether the observers really did maintain a single rating standard or
whether they might have unintentionally held slightly different standards for dif-
ferent image change types. Observers could give a rating of ‘0’ if they perceived
the images in a pair to be identical; they had been told that some of the image pairs
might be identical, but they were not told what proportion. There was no upper limit
set for the ratings. At the end of the experiments, each of the observers’ ratings was
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divided by the median value for that observer, and the normalized ratings for each
pair were averaged across observers.

This stimulus presentation protocol is similar to those that might produce
‘change blindness’ (Simons and Rensink, 2005). However, apart from image pairs
that differed in the detailed organizations of textures or in small movements of ob-
jects (see below), the observers did not seem to be subject to change blindness. The
observers had had sufficient training and practice (see To et al., 2010) with image
pairs like those to be presented in the main experiment that, we presume, they were
clearly aware of what sorts of image change to expect.

2.2. Contrast Discrimination Dippers

Our methods for stimulus presentation and the staircase procedure for obtaining
contrast thresholds have been described in detail before (Chirimuuta and Tolhurst,
2005a). Pedestal images were presented at a variety of contrasts, defined as dB at-
tenuation from the maximum (when the brightest pixel in the image was double the
surrounding grey of the display and the darkest pixel had a nominal value of zero).
The pedestal image was a 6 deg square image derived either from a monochrome
photograph of a street scene (Fig. 2A) or a 1/f random noise pattern (Fig. 2C) or
versions of these that had been notch filtered or bandpass filtered with 1 octave wide
filters. The increment was added to the pedestal and its contrast was adjusted in a
2AFC staircase to determine the increment threshold — the increment and pedestal
were presented on alternate frames (frame rate 120 Hz) and their contrasts were
controlled separately using pseudo-15 bit LUTs. The increment was a Gaussian-
weighted patch of the street scene, the 1/f pattern or a filtered variant; the spread of
the Gaussian was 0.38 deg. Eight different combinations of increment and pedestal
were studied, with 11 different pedestal contrasts in each. In an experimental ses-
sion, the staircases for 5–6 pedestal contrasts would be randomly interleaved.

In a trial, the pedestal would be presented alone in one 100 ms interval and the
pedestal plus the increment in the other interval. The increment was assigned to
the first or second interval at random on each trial. In response to the observer’s
choices, the increment contrast was increased or decreased, and the staircase gen-
erally stabilized at a contrast near to the point where the observer would correctly
choose the increment interval on 75% of trials. Threshold was calculated by fitting
an error function to the psychometric function that resulted from 100–200 trials.

2.3. A V1 Based Model of Visual Discrimination

Our model is based on that of Watson and Solomon (1997) which is used to explain
detection thresholds for monochrome grating stimuli. We have tried to extend that
model to encompass coloured stimuli (see Lovell et al., 2006; To et al., 2010) and
suprathreshold decisions. We have implemented a variety of models with different
receptive field shapes and interactions (To et al., 2010) and here we describe the
one that yielded the best match to the psychophysical dipper data: a phase-invariant
‘complex cell’ model.
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Figure 2. Contrast ‘dipper’ experiments that were used to optimize the numerical parametersof the
V1 model. In all, 8 experiments were examined, and a single set of numerical parameters fitted to
them, and 3 of those 8 are summarized here. (A) The circles show the average discrimination thresh-
olds of 2 observers in an experiment where a small patch of the image was added to the centre of a
monochrome photograph of a street scene. The line is the dipper calculated from the V1 model with
the optimized parameters. (B) The same except that the full street scene has been notch filtered to
remove vertical components near 16 cycles per picture, while the test patch was band-pass filtered
around vertical 16 c/picture. (C) The same except that the full ‘picture’ is a 1/f filtered random noise
pattern; the small central patch is of the same filtered noise.

Briefly, the model consists of ‘simple-cell’ receptive fields with Gabor profile —
6 orientations by 5 spatial frequencies by two spatial phase symmetries. The fields
are elongated and are not self-similar: the spatial frequency and orientation tuning
gets sharper as spatial frequency is increased (Tolhurst and Thompson, 1981; Yu et
al., 2010). The bandwidths were graded with optimal frequency: for fields with op-
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tima of 1.25, 2.5, 5, 10, 20 cycles per degree, the frequency bandwidths were 2.12,
1.43, 0.93, 0.64, 0.45 octaves (full width at half height) and the orientation band-
widths were 43.4, 34.5, 22.8, 17.7, 11.6 degrees (full width at half height). These
values lie in the ranges found for single neurons and deduced for psychophysi-
cal channels. The sensitivities of these frequency bands within the model were
weighted according to typical observers’ contrast sensitivity for gratings of those
frequencies. There are, in fact, three of each field type to deal with image colour:
a ‘luminance’ detecting field, and an isoluminant red–green opponent and a blue–
yellow opponent field based on the MacLeod–Boynton transformation (Lovell et
al., 2006).

Each field must be represented at every spatial location in the images and so
the field templates must be convolved with the images. The first image in the pair is
first convolved with all the different field types, giving a set of values proportional to
image luminance. These linear responses are divided by the local mean luminance
values to give contrast responses. We follow the method of Peli (1990): for each
spatial frequency band, the image is also convolved with a 2D Gaussian blob having
the same spread as the Gaussian envelope of the Gabor fields. The ‘linear response’
of each Gabor field is divided by the ‘linear response’ of the matched Gaussian blob
whose field is centred on the same point in space.

The r.m.s. is taken of the responses of paired odd-symmetric and even-symmetric
‘simple cells’ to give phase-invariant ‘complex cell’ responses. The contrast output
of each ‘complex cell’ is weighted according to estimates of a human observer’s
contrast sensitivity for luminance or isoluminant sinusoidal gratings of the field’s
centre spatial frequency, orientation and eccentricity from the fovea. We measured
foveal contrast thresholds for luminance gratings of appropriate orientations and
spatial frequencies, and deduced the sensitivities within the model so that the model
would explain those thresholds; we estimated thresholds for chromatic gratings
from Mullen (1985) and Mullen and Kingdom (2002). The spatial fall-off in sensi-
tivity from the centre of the fovea was modelled from Pointer and Hess (1989) and
Mullen and Kingdom (2002). For luminance gratings the sensitivity falls by a factor
of 10 in about 40 cycles of the grating along the vertical meridian and in about 60
cycles along the horizontal meridian (Pointer and Hess, 1989; Robson and Graham,
1981). The sensitivity for isoluminant gratings falls off much more quickly with
eccentricity (Mullen and Kingdom, 2002): a factor of 10 in only 8 cycles for low
spatial frequency RG gratings and in 15 cycles at higher frequencies. The sensitiv-
ity for BY isoluminant gratings falls off by a factor of 10 in about 25 cycles. The
point of maximum sensitivity was, of course, in the centre of the target image.

In the simplest model, the second image would be similarly processed and the re-
sponses to the image pair would be compared neuron by neuron. However, realistic
models of V1 incorporate threshold behaviour, and non-linear suppressive interac-
tions between neurons (e.g., Blakemore and Tobin, 1972; Heeger, 1992). The simple
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contrast responses of the neurons must be transformed (following Legge and Foley,
1980) by a sigmoidal transducer function of the form (see Fig. 3):

Response = |Contrast|p
1 + WN · Normaliseq + WS · Surround r . (1)

The numerator with power p gives a positive acceleration or threshold; the terms in
the divisor represent two different kinds of inhibitory interaction between neurons
and their effect is to cause the response to become compressed at higher contrasts.
Divisive normalizing nonlinearities have been established neurophysiologically and
psychophysically (Bonds, 1989; Foley, 1994; Heeger, 1992; Watson and Solomon,
1997). We have modeled two forms of suppressive signal, treating them as distinct
since neurophysiology has usually shown them to have different properties. How-
ever, Cavanaugh et al. (2002) do suggest that the two suppressive phenomena may
grade into each other. First, we model a spatially localized, non-specific suppres-
sion (Heeger, 1992); we implemented the normalizing signal for all the neurons at
a given point in the image as the sum of the responses of all the neurons with fields
centred at that point; the absolute value of each suppressing neuron’s response was
raised to a power q before the sum. Thus the spatially-localized signal is summed
across all spatial frequencies and orientations, and the same divisive signal is ap-
plied to all neurons at that point. We have also modeled surround suppression that is
stimulus specific (Blakemore and Tobin, 1972; Cavanaugh et al., 2002; Maffei and
Fiorentini, 1976); this is necessary to explain the forms of contrast discrimination
functions for gratings of different geometry (Meese, 2004). Here, the suppressive
signal applied to a neuron at a given location in the image is derived only from
neurons of the same optimal spatial frequency and orientation, but whose fields are
centred in a blurred annulus around the neuron being suppressed. The absolute val-
ues of the responses of these suppressing cells are raised to a power r , then summed
and weighted according to a blurred annulus around the inhibited neuron:

Surround_strengthf = d · e−d2/(2·rad2
f )

, (2)

where d is distance from the center of the suppressed field, and radf is the radius
of the annulus, which is proportional to the spatial period of the carrier sinewaves
of the Gabor fields. Thus, we have two suppressive signals: one is spatially very lo-
calized but is diffuse in spatial frequency and orientation (Heeger, 1992), whilst the
other is specific to spatial frequency and orientation but diffuse in space (Blakemore
and Tobin, 1972). Watson and Solomon (1997) used one suppressing signal which
is potentially more diffuse in space than ours and is partly specific for orientation
or frequency; Cavanaugh et al. (2002) would suggest that the degree of stimulus
specificity should vary with distance from the centre of the suppressed neuron’s
receptive field.

The transformed responses of the millions of neurons to one image are subtracted
from the transformed responses to the other image in the pair, and the millions of
differences are pooled by Minkowski summation of the absolute values (Watson
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and Solomon, 1997) with exponent m. The luminance, red–green and blue–yellow
planes were processed entirely separately, and the cues they provided to image
difference were finally combined only at this Minkowski summation stage. This
gives a single number which is the model’s prediction of the observer’s magnitude
estimate. Although the images may have differed in many, disparate ways along
different dimensions, the whole dataset of 588 or 900 naturalistic images pairs is
summarized by giving a single numerical output value to each image pair.

The 7 model parameters (5 in equation (1), radf and m) were adjusted to give the
best overall fit to the 88 data points in 8 contrast discrimination experiments with
monochrome images (Fig. 2). The iterative search minimized the sum of squares
deviation between model prediction and experimental thresholds. However, the fit
with just those 7 parameters was not satisfactory: some model dippers were slightly
displaced above the experimental data and some slightly below. We added an ex-
tra private parameter to the fits for 6 of the dippers to allow the model to slide each
model dipper to better fit the data. The 6 extra parameters increased or decreased the
grating contrast thresholds underlying the model by up to +/−2 dB, independently
for each dipper. These shifts may represent day-to-day differences in observer sen-
sitivity or differences in the adaptational state caused by slight differences in the
contrast energy in the stimuli making up the different dipper experiments.

3. Results

The 7 numerical parameters of the V1 model (plus the 6 threshold adjustment
parameters) were sought by iteratively searching to minimize the sum of squares
deviation between the results of 8 contrast discrimination ‘dipper’ experiments (11
thresholds each) and the predictions of the model for the 88 threshold measurements
that comprised the experiments. The mean sum of squares error (MSE) between
model and experimental data point was 2.21 dB squared, compatible with estimated
standard errors on the threshold measurements of 1–1.5 dB. Figure 2 shows the
experimental results and the model fit for 3 of those 8 dippers; these fits are repre-
sentative of the MSE across the whole data set. The images beside the graphs show

Figure 3. (A) The sigmoidal transducer function resulting from our V1-based model of contrast
discrimination in monochrome naturalistic stimuli (Fig. 2). The transducer shows the response of
a ‘neuron’ to a sine-wave grating; the neuron’s receptive field matches the orientation and spatial fre-
quency of the grating, and is in the centre of the grating (the ‘fovea’). (B) The transducer function
reported by Legge and Foley (1980) to describe their ‘dipper’ functions with sine-wave gratings. The
graph of (A) may seem to have a threshold at low contrasts, while that of (B) has a small positive
acceleration. The different appearance only reflects how the different graphs intersect the identical
log–log axes in parts (A) and (B). (C) A histogram of the equivalent luminance contrasts in a selec-
tion of our naturalistic stimuli. Equivalent contrast is calculated from the first stage of the V1 model:
the image is convolved with a receptive-field template and the resultant convolution is divided by the
local mean luminance; that value is then calibrated against the model’s initial response to sine-wave
gratings of known contrast and the appropriate spatial frequency (Tadmor and Tolhurst, 2000).
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(A)

(B)

(C)
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the pedestal stimulus, based either on a photograph of a street scene or an image of
1/f filtered noise. The 8 dippers used these pedestals or bandpass or notch-filtered
(e.g., Fig. 2B) versions of these. The increments were small Gaussianly-weighted
central patches of the main images or filtered versions of them. The best-fitting
exponents p,q and r in equation (1) were 4.23, 3.45 and 3.86 with a Minkowski
summing exponent m of 2.16. These values are comparable with those in other
studies, primarily of the visibility of sinewave gratings (Foley, 1994; Foley et al.,
2007; Watson and Ahumada, 2005; Watson and Solomon, 1997). The weights WN

and WS were 0.0504 and 0.779, with a surround radius radf of 2.14 periods.
For the ‘dipper’ in Fig. 2A, the y-axis intersection (−28 dB) and the pedestal

contrast at the depth of the dip (about −35 dB) are lower than for the other two
illustrated ‘dippers’. This is likely because the street scene (with its regularly spaced
vertical door and window frames) contains a band of higher contrast energy than do
the other stimuli. The biggest equivalent Michelson contrast (see below, Fig. 3C) in
the street scene is 0.56, but is only 0.19 in the 1/f filtered noise (an approximately
10 dB difference).

Six of the 7 numerical parameters determine the form of the Naka–Rushton trans-
ducer function (the 7th is the Minkowski summing exponent m). Figure 3A plots
the transducer function for the optimized set of parameters; it shows the result of
equation (1) for the single ‘neuron’ giving the largest response when the stimulus
is a sinusoidal grating covering the full spatial extent of the modeled x, y space.
Figure 3B shows the transducer given by Legge and Foley (1980) for their semi-
nal description of contrast discrimination of sinewave gratings. They used a simple
Naka–Rushton formulation with p of 2.4 and q of 2.0. The transducers in Fig. 3A
and 3B are not identical, but the inflexion is at a remarkably similar contrast in the
two.

For interest, Fig. 3C tries to indicate approximately where in the non-linear trans-
ducer range our model is operating for natural image stimuli. The histogram shows
the frequency with which the many ‘neurons’ in the model ‘saw’ the stimulus
as containing a feature giving the same magnitude of response as their favoured
sinewave grating — the equivalent Michelson contrast, which is the contrast of the
optimal sinewave grating that would evoke the same response as did that location
in the natural image (Lauritzen and Tolhurst 2005; Tadmor and Tolhurst, 2000).
These responses are calculated at an early stage of the model: after the convolu-
tion with receptive field templates and division by the mean luminance, but before
application of the suppressive nonlinearities. The modal value of ‘contrast in nat-
ural images’ is low, as we have shown before, and is close to the inflexion in the
non-linear transducer functions.

The model, with exactly the same parameters as shown for the contrast-
discrimination dippers of Fig. 2, was applied to the coloured image pairs in two
experiments where observers gave magnitude estimation ratings of the perceived
difference between images in each pair. The 7 model parameters were, of course,
derived for monochrome images (Fig. 2), and we used the same parameter values
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for the MacLeod–Boynton RG and BY planes of the images, which we have used to
investigate perception of chromatic changes (see To et al., 2010, for detailed discus-
sion). The model treated the Luminance plane and the RG and BY planes entirely
separately; the only differences in processing were in the luminance or isoluminant
grating sensitivities fed into the model and the ways in which these fell off with
eccentricity (Mullen and Kingdom, 2002).

Figure 4A plots the observers’ ratings for the 294 ‘garden scene’ image pairs
against the output of the model (which is in arbitrary units). Each image pair was
presented once upright and once upside-down; we were interested whether high-
level cognitive cues might have contributed to the ratings and we supposed that
image inversion might frustrate such cues. The results for upright and inverted are
very similar. The solid line shows the robust linear regression through the graph (r
is 0.83; n of 588). It is worth noting that the ratings were correlated with the pixel-
by-pixel r.m.s. difference between the images with r of 0.60. The dashed line shows
the regression with an added quadratic term. Although, the modest curvature of the
quadratic regression does not seem to add much to the overall relation, addition of
the quadratic term did have a highly significant effect on the residuals (F of 75.7).

Figure 4B plots the ratings for the 900 ‘varied image pairs’ against the out-
put of the model. There is clearly scatter in the fit of the ratings to the model
(r = 0.55;n = 900) and, not surprisingly, there must be more to predicting an
observers’ ratings than understanding only the low-level coding processes of V1.
While this correlation is low, it is substantially higher than the correlation between
the ratings and the r.m.s. differences between the images in the pair (r = 0.28).
However, the correlation is adequate enough that we can see that rating is roughly
directly proportional to the model’s output; adding a quadratic term (dashed line)
gave insignificant improvement.

We have discussed in detail (To et al., 2010) possible reasons why the V1-based
model might give poor correlations for some kinds of image change. The higher
correlation in Fig. 4A is probably because the 288 image pairs differed along only a
few dimensions and because the stimuli were based on only 6 parent images so that
each dimensional change was represented at 7 magnitudes. The 900 images pairs
in the other set (Fig. 4B) were derived from 180 rather different parent images,
and the pairs could differ in one or more disparate ways. We have argued (To et
al., 2010) that one particular kind of image change will be badly modeled: image
changes where there are small changes in object location or where there are changes
in textures of image parts (e.g., changes in the detailed arrangements of pebbles on a
gravel path). The model, very literally, compares the two images with exact spatial
precision, and this seems an unrealistic expectation of human vision. Figure 4C
replots the data of Fig. 4B, after discarding the many image pairs where the major
difference was in object textures or where objects moved only a small amount. The
remaining ratings have a higher correlation with the model (r = 0.65;n = 722), but
there is still work to explain all the variance in the observers’ ratings. Again, adding
a quadratic term to the regression did not give any significant improvement.
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Overall, the 3 graphs in Fig. 4 seem to show that observers’ ratings of the multidi-
mensional and disparate changes in natural images tend to be directly proportional
to the output of the model, based on the pooling of the supposed response magni-
tudes of cortical neurons. Quadratic regressions have only slight curvature or add
nothing beyond a linear regression.

4. Discussion

We have extended a quantitative model (Daly, 1993; Lubin, 1995; Watson, 1987;
Watson and Solomon, 1997) of populations of V1 neurons to examine how it would
fare with naturalistic stimuli (Rohaly et al., 1997; To et al., 2010). We have deter-
mined the numerical values of the model parameters by optimizing the model on
a relatively straightforward experimental paradigm: contrast discrimination ‘dip-
pers’ (compare Foley, 1994; Legge and Foley, 1980; Solomon, 2009; Watson and
Solomon, 1997). Rather than being constructed conventionally with sinusoidal grat-
ings, our ‘dippers’ were performed with a photograph of a natural scene, a 1/f

random noise pattern (a surrogate for natural images whose power spectra are very
roughly 1/f ) and various filtered versions of these. The model, therefore, was de-
signed to give a good match to experiments of the same kind as considered by Weber
and Fechner — measurements of the ability to distinguish stimuli of different in-
tensity. We have then examined how the same model ‘perceives’ the suprathreshold
differences between the coloured naturalistic images for which we have observers’
magnitude estimate ratings. The images in these experiments covered a very large
range of subject matter and there were many kinds of image change, which might
be considered as the basic elements in many everyday visual tasks (see To et al.,
2010).

V1-based modeling (after Watson, 1987) has proved useful in developing met-
rics for assessing the quality of compressed or corrupted images (e.g., Daly, 1993;
Lubin, 1995), and Rohaly et al. (1997) have also tried to model the visibility of tar-
gets in terrain scenes. We, too, are interested in applying vision research to explain
the visibility of objects in natural scenes and the detectability of changes in those
scenes. After five decades of fundamental psychophysical and neurophysiological
research on the elements of visual processing and coding, we are in a position to ask
whether all the careful and systematic experiments on, for example, sinusoidal grat-
ings is enough to start to model everyday vision. While we cannot possibly say that

Figure 4. Plots of the experimental magnitude ratings against the output (in arbitrary units) of the
V1 model optimized on contrast-discrimination dippers. The solid lines show robust least-squares
regression lines, while the dashed lines have an added quadratic term. (A) The ratings for the 294
garden scenes are plotted against the model output (r = 0.83); each image pair was presented twice —
once upright (filled symbols) and once upside-down (open symbols). (B) The ratings for all 900 ‘varied
pairs’ series are plotted against the model output (r = 0.55). (C) As for (B), except that a subset
(722) of the ‘varied pairs’ is plotted (r = 0.65); stimulus images differing in small spatio-chromatic
(‘texture’) changes have been discarded.



D. J. Tolhurst et al. / Seeing and Perceiving 23 (2010) 349–372 365

(A)

(B)

(C)



366 D. J. Tolhurst et al. / Seeing and Perceiving 23 (2010) 349–372

we have uniformly sampled the disparate multi-dimensional space of all possible
natural images, we have considered a great variety of everyday scenes and every-
day differences (see To et al., 2008, 2010 for many examples). The correlations we
have shown (Fig. 4) between human response and V1 model are promising, and
suggest that it is not premature to study vision with natural images. We are also
in a position to ask how different aspects of visual processing contribute to every-
day vision and whether the detailed knowledge of V1 processing is sufficient. We
have reported (To et al., 2010) that, surprisingly, a model without the well-studied
phenomena of divisive normalization fares little worse than a full model. We have
been able to show that V1 modeling will have limits, since there are some scenes
or scene changes where the models consistently fail to explain human performance,
such as changes in facial expressions, shadowing or in textures (To et al., 2010).

In one experiment, with a relatively limited range of images and image changes,
the correlation between experiment and model output was 0.83; in the other ex-
periment, with a greater range of subject matter in the images, the correlation was
poorer. We have discussed elsewhere (To et al., 2010) why the implementation of
such models may fail to match an observer’s perception of the magnitude of some
kinds of image change. It should be noted that V1-inspired models are substantially
better predictors of ratings than the pixel-by-pixel r.m.s. difference between im-
ages in the pairs. It should also be noted that we can develop ‘better’ models of the
ratings by optimizing the model parameters on the rating experiment stimuli them-
selves, rather than on the ‘dipper’ data. The best correlations that we have obtained
for the data in Fig. 4 are 0.86, 0.65 and 0.73 with a model in which the combination
of numerical parameters is such that the transducer (compare Fig. 3A) is no longer
monotonic. While such a re-optimized model may be useful in some other context,
we wish to stress that the model we describe here directly links to the tradition of
Weber and Fechner because it is optimized on intensity-discrimination data.

The pioneers of sensory science (Fechner, Weber, Adrian, and B. H. C.
Matthews) supposed that a person’s numerical magnitude judgment would be di-
rectly proportional to the response magnitude of appropriate neurons. We can argue
whether sensory receptors or cortical neurons are the appropriate neurons to choose,
and we can argue about the physical metrics used to define stimuli. We can surely
accept that stimuli of greater magnitude must produce some greater internal neural
response and that this leads to an increased magnitude of sensation and increased
numerical rating values. However, it has been debated whether the internal mag-
nitude of sensation need be directly proportional to neuronal response or whether
numerical magnitude estimation ratings need be directly proportional to the inter-
nal magnitude of sensation (e.g., Gescheider, 1997). We instructed our observers to
give ratings proportional to the magnitude of their sensations; in so far as the model
gives an independent measure of image difference, the linear relation between rat-
ings and model predictions implies that the observers did use an appropriate scale.

Thus, our present results suggest that observers’ ratings do depend linearly on
neuronal response levels. The rating of perceived complex differences in natural
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scenes seems directly proportional to the numerical output of our V1 modelling
which, we suppose, reflects differences in the magnitudes of neuronal responses to
the two images under comparison. At first sight, it would seem that the perceived
magnitude difference between two natural images is directly proportional to the dif-
ference in neuronal response to the two images, where response might be expressed
as total number of action potentials generated during an image presentation. This
presumes that the transducer function (Fig. 3A) underlying our modelling is a rep-
resentation of how neuronal response magnitude increases with contrast. Boynton
et al. (1999) have argued that the sigmoidal transducer function which is presumed
to underlie contrast discrimination thresholds is the same shape as the relation be-
tween the V1 BOLD (fMRI) signal and contrast while Heeger et al. (2000), in turn,
argue that the BOLD signal follows the relation between neuronal action potential
rate and contrast.

However, the hypothesized sigmoidal transducer function (like equation (1);
Fig. 3) does not simply describe the the relation between response amplitude and
contrast for single V1 neurons. Individual V1 neurons each respond to very limited
ranges of contrast, while the dynamic ranges of different neurons cover different
contrast ranges (Albrecht and Hamilton, 1982; Sclar et al., 1990; Tolhurst et al.,
1981, 1983). The BOLD response is like the summed activity of many neurons
whose threshold contrasts differ and whose responses saturate at different contrasts
(Heeger et al., 2000). Thus, if we were to model the psychophysical transducer
truly from the behaviour of V1 neurons, we would have to pool the responses of
many neurons, and the transducer’s shape would reflect the number of neurons re-
sponsive at each contrast as well as the shape of the response-contrast functions of
single neurons (Chirimuuta and Tolhurst, 2005a; Clatworthy et al., 2003; Goris et
al., 2009; Watson and Solomon, 1997).

Furthermore, psychophysical judgments are probabilistic and there is no explicit
decision ‘noise’ within our model. We have modelled average performance rather
than trial-by-trial variability, and so fixed noise is implicit as the fixed extra amount
of ‘response magnitude’ in the transducer (Fig. 3A, B) that would be needed, on
average, for discrimination. However, we need to recognize that the variability of
neuronal responses as well as their magnitude is not fixed with contrast; our abil-
ity to discriminate contrasts will be affected by how response variability changes
with contrast (Kontsevich et al., 2002). It is an often repeated observation that the
variance of neuronal firing rates increases with increasing response level in visual
cortex (Dean, 1981; Geisler and Albrecht, 1997; Snowden et al., 1992; Tolhurst et
al., 1981, 1983; Vogels et al., 1989; Wiener et al., 2001). The standard errors of
our ratings tend to be higher for higher rating values (To et al., 2010). Even if firing
rate were linearly proportional to contrast, then we would still see something ap-
proaching Fechner’s Law (despite the absence of a logarithmic transducer) because
we would need bigger contrast increments at the higher contrasts to overcome the
higher response variability (see Solomon, 2009). The transducer of Fig. 3 may not
be simply a schematic of how pooled neuronal firing rate depends upon contrast;
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it is an ‘effective transducer’ in that it fits the dipper data, implicitly incorporat-
ing any changes of variance (Chirimuuta and Tolhurst, 2005a; Goris et al., 2009;
Kontsevich et al., 2002). It may, however, be that the dominant source of noise
in decision processes lies elsewhere than in V1 and that it is less dependent on
stimulus intensity.

In fact, the interpretation of the contrast dipper function is debatable (Georgeson
and Meese, 2006; Kontsevich et al., 2002; Solomon, 2009). According to signal de-
tection theory, appropriate contrast-dependent changes in response variance could
as much give rise to the contrast dipper as could contrast-dependent changes in
response magnitude; ‘it could be argued that the transducer is not much of an
explanation, simply an alternative way to describe the data’ (Solomon, 2009). How-
ever, the effective transducer does look similar to the response magnitude relation
implied by the BOLD signal (Boynton et al., 1999). While ‘the jury is still out’
(Georgeson and Meese, 2006) as regards the degree to which the effective trans-
ducer to explain dipper functions has a shape incorporating contrast-dependent
changes in variance, this ambiguity may have an important effect on our use of
the same transducer for suprathreshold magnitude ratings (J. M. Foley, personal
communication). The transducer is designed to explain the results of contrast dis-
crimination experiments, and variability in responses will be a crucial contributor
to discrimination thresholds. However, this is not true for magnitude ratings, where
the average rating would be expected to depend on the average neuronal response
magnitude, and not on any variance (fixed or changing with contrast). Perhaps, there
would be a better match between model and ratings if the magnitude and variance
aspects of the effective transducer were better distinguished. If the transducer that is
effective for the dipper functions does include an element of increased variance for
large stimulus intensities, then this may tend to exaggerate the predicted magnitude
ratings for big stimulus differences; this is consistent with the significant downward
deviation from a straight line fit of the graph of ratings against model prediction in
Fig. 4A.

B. H. C. Matthews (1931) proposed that the logarithmic relation between action
potential firing rate and tension in a muscle receptor could be an explanation for
Fechner’s hopefully-universal Law of Sensation, where the ability to discriminate
stimuli along simple intensity dimensions followed the rule that �I/I is constant.
While this proposal is now seen to be too simplistic in specific detail, it was of
fundamental importance in the quest to link human perceptual performance with
the behaviour of individual or populations of nerve cells. Our results with complex
natural visual images do, indeed, suggest that perception of difference is directly
related to differences in neuronal response, but this is a population response pooled
across neurons.
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