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Individual V1 neurons respond dynamically over only limited ranges of stimulus contrasts, yet we can dis-

criminate contrasts over a wide range.

Different V1 neurons cover different parts of the contrast range, and

the information they provide must be pooled somehow. We describe a probabilistic pooling model that shows
that populations of neurons with contrast responses like those in cat and monkey V1 would most accurately

code contrasts in the range actually found in natural scenes.

The pooling equation is similar to Bayes’s equa-

tion; however, explicit inclusion of prior probabilities in the inference increases coding accuracy only slightly.
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1. INTRODUCTION

Oriented contrast edges are widespread in natural
scenes!™ and are thought to be important cues in object
recognition.® Consistent with this, the primary visual
cortex (V1) contains many neurons that respond well to
contrast features of specific orientations and spatial
frequencies.’!!  One class of V1 neuron—the simple
cell®"—has receptive field structure!’'* remarkably
similar to idealized basis-function sets®>!® that might en-
code the edges found in natural scenes. This paper is
concerned with the contrast coding employed by simple
cells, and we develop a model of the code for natural con-
trasts as a Bayesian maximum a posteriori estimator.

It is presumed that it is the activity of neurons in V1 in
particular (both simple and complex cells) that codes for
the magnitudes of stimulus contrasts (for some interest-
ing arguments in favor, see Refs. 16—-18). However, V1
neurons may seem unlikely components of a contrast code
for a number of reasons. First, responses of neurons in
cat and monkey V1 are noisy in the sense that, when the
same stimulus is presented repeatedly, the number of ac-
tion potentials elicited will vary markedly from trial to
trial, with variance approximately twice the mean.!923
Second, V1 neurons are not usually responsive over the
entire contrast range (from 0 to 100%); rather, the
contrast-response function is a steep sigmoidal curve
which can be fitted with the Naka—Rushton (hyperbolic
ratio) equation?>28 [see Eq. (2) below]. At high and low
contrasts the curve will be flat, with the semisaturation
constant ¢, determining the contrasts where the curve is
accelerating. Any single neuron will be capable of pro-
viding only a small amount of information about stimulus
contrast.?”

However, the responses of different neurons do cover
different parts of the overall contrast range!®202324. ¢
varies between neurons. The brain must be able to com-
bine individual responses in such a way as to limit the ef-
fects of noise and to derive information about the full con-
trast range (i.e., by pooling the responses of neurons with
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different c5q values). Bayesian theory provides a means
of achieving this.2>?8 An observer can attain the highest
accuracy in contrast identification tasks by choosing the
contrast ¢, which is most probable given the noisy re-
sponse r, i.e., the contrast for which P(c|r) is maximum.
This is the maximum a posteriori rule, and P(c|r) can be
calculated from the standard Bayes formula,

P(rlc)P(c)
P(c|r) = T, (1)

where P(r) is a normalizing term, P(r|c) is the likelihood
distribution (the probabilities of the occurrence of each re-
sponse given a particular stimulus contrast), and P(c)
represents a priori knowledge of the relative occurrences
of the different contrasts. Note that the decision stage
does not include any gain function,?® which might be re-
quired to model behavioral contrast identification if, for
example, it is more costly for an observer to misidentify
high contrasts than low ones. Such constraints are not
relevant to the current purposes, which are to explore the
relationships between prior information about natural
scenes and V1 coding strategies.

We present a simulation of the problem, measuring the
combined contrast identification performance of sets of
model neurons. The P(r|c) distribution for each neuron
is estimated from the output of the Naka—Rushton equa-
tion, corrupted by multiplicative noise over a large num-
ber of trials. The responses for the set of neurons are
pooled to form joint distributions P(r|c) where r is the set
of responses of a set of neurons to a single stimulus. P(c)
is calculated from natural scenes and is found to be a non-
uniform distribution with most frequent contrasts at the
midrange on a logarithmic scale.30-23

We explore the effects on coding accuracy of the Naka—
Rushton parameters and of inclusion of the a priori infor-
mation; we either include P(c) calculated from natural
scenes or replace it with a uniformly flat distribution. In
the V1 physiology literature, c5, has been found to take a
range of values, but with a bunched distribution in which
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values around 0.1 are most common.?~2%3% The ¢;, dis-
tribution determines the contrast for which identification
is most accurate, and we show that the cat or monkey dis-
tributions result in maximum accuracy over the contrast
range most frequent in natural images, even when the
simulation does not include natural priors. Explicit in-
clusion of the prior probability distribution P(c) adds
little to the accuracy of contrast identification.

2. METHODS

A. Model Parameters

Various authors have fitted V1 neuron contrast-response
functions (responses to sine-wave gratings of different
contrasts) with the Naka—Rushton® equation [Eq. (2)].
The function can be viewed just as an empirical fit,?* as a
component of models of V1 circuitry,®®3” or as derived
from information-theoretic analysis.®® For our purposes
it is immaterial whether the function is simply empirical,
though some of our findings may warrant discussion in
the light of the principled interpretation of the equation

R = Rmax[cq/(cgo + Cq)]’ (2)

where R is a neuron’s response (described as a spike count
per trial) to contrast ¢ of the grating, R, is the neuron’s
maximum response, cxq is the contrast at half saturation,
and ¢ is an exponent (usually about 2).2* Contrast is de-
fined as

c = (Lmax - Lmin)/(Lmax + Lmin)9 3)

where L is the luminance of a point on the stimulus dis-
play.

For simplicity, it is assumed that the stimulus pre-
sented is optimal for exciting the neuron, so that there is
no uncertainty about stimulus parameters other than
contrast. The parameter c5, governs the contrast sensi-
tivity of the neuron, and has been measured in cat and
monkey V1.2526 Values of ¢, are not evenly distributed
in V1, but instead the most common values are near 0.1.
The c5y value governs the horizontal position of the re-
sponse curve and therefore which particular contrast val-
ues will fall under the steep portion of the curve to give
the greatest differential mean response. It is the value of
cso, therefore, that determines the contrast range over
which a neuron can usefully encode contrast. Figure 1
shows histograms of the c 5o distributions for cat (D. J. Tol-
hurst, unpublished data) and monkey®?; for methods used
to collect data, see Refs. 40 and 41. These two data sets
are similar to those published by others, and we are very
grateful for the use of the especially detailed and numer-
ous monkey data. The mean and median of the monkey
c5o' s are slightly higher than those of the cat; that is, the
monkey neurons are on average less sensitive.?>*

Our model neuronal populations are each made up of
16 neurons whose individual contrast-response functions
are defined by Eq. (2). For all simulations R,,,, = 10 and
q = 2, but the different model populations differ with re-
spect to c5y values, which are indicated as symbols in Fig.
2. The cat and monkey populations have 16 different cj,
values chosen to give a representative sample of the cat
and monkey data, respectively, although we excluded the
monkey neurons with ¢y values above ~1.0 (see Section
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Fig. 1. Frequency of occurrence of V1 neurons with different c5,
values: A, a sample of 138 neurons recorded in anaesthetized
and paralyzed cats by D. J. Tolhurst in a number of studies (e.g.,
Ref. 19); B, a sample of 219 neurons recorded in anaesthetized
and paralyzed monkeys (Macaca fascicularis); these data were
very kindly provided by D. L. Ringach, M. J. Hawken, and R.
Shapley.®
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Fig. 2. Distribution of contrasts in natural scenes and c5, of
models. Solid curve, estimation of the distribution of different
contrasts in natural scenes. Gabor filters of eight different spa-
tial frequencies at eight different orientations were convolved
with 64 digitized images of natural scenes. 158 X 158 values
were taken from the center of each 256 X 256 convolution, so
that the distribution is based on more than 100 X 10° values.
The number of occurrences of each contrast have been divided by
the total number of occurrences of all contrasts to give the P(c)
distribution; there are 100 bins per log unit of contrast. The
open circles show the 16 cj, values taken to represent the distri-
bution of ¢5y measured in cats (Fig. 1B), the crosses show the 16
c5o values taken to represent the monkey distribution (Fig. 1A),
the dots are 16 c5, values evenly spaced along the contrast axis.
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4). The control distribution has 16 c5y’s that evenly span
the contrast range from 0.001 to 1.0 in 15 logarithmic
steps. [Elsewhere we discuss the effects of changing
Rax> ¢, and the number of neurons in a model.*?

B. Building the Contingency Table: P(c/r)

Equation (2) gives a deterministic response to contrast,
whereas real V1 neurons respond with much trial-to-trial
variability. In the model, noise is simulated by generat-
ing numbers from a Poisson probability distribution

P(x) = [exp(—u)pu*)/x!, @)

where x is an integer and u is the mean response for the
contrast in question, calculated according to Eq. (2).
However, these noisy responses will have variance equal
to the mean rather than twice the mean (as observed in
cat and monkey?*?223). The greater noise is modeled by
generating a second Poisson random number that uses
the first noisy answer (x) as its mean to generate a new
integer value r. This procedure is incorporated into the
calculation of the response likelihood distribution:

exp(—u)x"
r!

P(rle) = X,

X

P(x) (5)

P(r|c) is calculated for each of the neuron’s possible re-
sponses given each of 311 contrasts from 0.001 to 1.26, in
equal logarithmic steps (0.01 log units). This distribu-
tion is summed across contrast to give P(r), the divisor of
the Bayes equation:

P(r) = >, P(r|c). 6)

At this stage, the prior distribution of contrasts is taken
to be flat, with each of the 311 contrasts equally likely. If
P(c)* is the flat distribution, P(c|r)* is the individual
posterior distribution without prior knowledge:

P . P(rlc)P(c)*

(c|r) P )
To combine the response cues generated by the 16
model neurons, the 16 individual a posteriori distribu-
tions are multiplied together to give the population distri-
bution P(c|r)*, the asterisk again signifying absence of
prior knowledge. This pooling rule,?® as described by Eq.
(8), retains information about the differential firing rates
of the neurons, in contrast to a pooling rule which simply

sums action potentials!®43;

IT Peclr* 11 Peelro*
P(c|n)* = = , (8)
P I1 Pero)

where r is the set of n individual responses
{r1, r9, rs,...,7,} and P(c|r;)* is the probability of a
given contrast given that the ith neuron gave a response
r;.

Finally, if we are to incorporate prior knowledge about
the probability of occurrence of each contrast in natural

scenes into the inference, the a posteriori distribution [Eq.
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(8)] is multiplied with the a priori distribution to give the
resulting distribution P(c|r):

P(c|r) = P(c|r)*P(c). 9

To estimate the natural priors distribution, we followed
the method of Lauritzen et al.,** Peli,*® and Tadmor and
Tolhurst,*® which measures the contrast of a region of a
natural scene by convolving the region with a Gabor filter
to represent a simple-cell receptive field,*”™*° dividing by
the local mean luminance, and then finding the contrast
of an optimal sinusoidal grating that elicits the same cal-
culated response. We used odd-symmetric Gabor filters
with a spatial-frequency bandwidth of 1.5 octaves'®5° and
with a variety of optimal orientations and spatial fre-
quencies to determine the contrasts throughout 64 pic-
tures of natural scenes digitized to 256 X 256 pixels and
over 1000 gray levels.’ The distribution is shown in
Fig. 2.

C. Simulations

We ran simulations to evaluate the performance of the
contrast coding of our three model neuron populations:
cat c5y, monkey csy, and control c5,. Performance was
evaluated without [Eq. (8)] and with [Eq. (9)] inclusion of
the prior probabilities.

We chose a set of 42 contrast values from 0.001 to 1.0,
evenly spaced on a logarithmic scale, and simulated the
presentation of 10,000 trials ¢ at each contrast. On each
trial, the responses of the 16 neurons in the model were
chosen from a double Poisson distribution [see Egs. (4)
and (5)] with parameter u set by the mean as calculated
from the appropriate Naka-Rushton equation for that
neuron. From the 16 responses r, we find the most likely
stimulus contrast ¢ given that set of responses [c giving
maximum P(c|r)]. The accuracy of coding at each con-
trast is

t
accuracy = . (10)

> [log(é) — log(c)]?
t

Accuracy is an inverse estimate of the variance of the
model that acknowledges that the model responses will
vary from trial to trial, and summarizes the range of es-
timated contrast responses in log space. It treats sys-
tematic errors in the same way as nonsystematic errors.
In reality, a contrast code that produces systematic errors
might be fine for certain tasks, such as contrast discrimi-
nation. The code might work well if it consistently and
correctly identified which of two contrasts was the higher,
even if it misidentified both. Accuracy was determined
for each of the test stimulus contrasts.

We also calculated the mutual information I(c; é) be-
tween the natural range of test contrasts ¢ and the esti-
mated contrasts ¢ as an alternative metric for the perfor-
mance of the models. When we calculated the mutual
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information, each stimulus contrast between 0.001 and
1.0 was presented a number of times proportional to its
estimated frequency of occurrence in natural scenes (Fig.
2). The total number of trials had to be more than
150,000 to minimize bias. The formula for mutual infor-
mation is

P(c; é)
I(c; ¢) = 2, Z P(c; ¢)log, POPE) (11)

3. RESULTS

The curve in Fig. 2 is the estimated distribution of con-
trast in natural scenes. The symbols below the curve
represent the sets of c5y’s for each of our model popula-
tions (cat, open circles; monkey, crosses; control popula-
tion, dots). Notice that most of the animal c;5y’s fall un-
der the peak of the natural contrast distribution,
suggesting that the most frequently occurring contrasts
will be encoded most reliably.?!

The results of formal estimations of the accuracy of con-
trast coding are shown in Fig. 3 for A, cat; B, monkey; and
C, control. Each plot shows accuracy (see Section 2) of
the coding at each test contrast calculated without (open
circles) and with (dots) inclusion of prior knowledge about
the distribution of natural contrasts, i.e., using Eq. (8)
and Eq. (9), respectively, to infer the contrast of a pre-
sented stimulus. The dashed curve (right ordinate)
shows the distribution of natural contrasts P(c) (or the
“priors”) redrawn from Fig. 2 but scaled to overlie the
peak of the higher of the accuracy curves.

Note that the monkey and cat plots resemble the bell-
shaped curves of the P(c) distribution, with peaks very
close to the peak of P(¢). On the other hand, the accu-
racy plots of the control population are flat and bear no
resemblance to the P(c¢) curve. This observation holds
for simulations run with and without priors, suggesting
that even before prior knowledge is included in the model,
cat and monkey neurons best identify the contrasts most
frequent in natural images. This optimization comes
about just because of the bunched cj, distribution of the
mammalian cortex (Fig. 1).

Surprisingly, there is not a dramatic difference between
the accuracy results for the “priors” and “no-priors” simu-
lations. For the monkey and cat populations, the peak
accuracy is slightly higher when the priors are included,
but with a reduction in accuracy at the highest contrasts
so that the graph resembles more closely the right tail of
the P(c) curve. For the control population, the priors
cause a bulge on the right-hand side of the plot so that
maximum accuracy is near (but not on top of) the peak of
P(c). Again, there is a drop-off in accuracy at the high-
est contrasts.

Table 1 quantifies some of the above observations. It
shows, for each neuronal population and for the priors
and no-priors conditions, the area under the accuracy
curve and the percentage of the accuracy area under the
peak of the P(c) curve (between contrasts 0.0186 and
0.295). The total area is an indication of the overall per-
formance of the model, while percentage-under-peak indi-
cates how well matched the neuronal population is to
natural contrast stimuli. Observe that all three model
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populations have roughly the same total area, and that
including natural priors in the simulation brings about an
increase in area of about 10%, suggesting that knowledge
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Fig. 3. Accuracy (left ordinate) of contrast coding for 16 model
neurons with A, ¢, sampled from the population of cat V1 neu-
rons (circles in Fig. 2); B, c¢50 sampled from the population of
monkey V1 (crosses in Fig. 2); C, cj5, evenly spaced across the
contrast axis from 0.001 to 1.0 (dots in Fig. 2). Note the differ-
ence in the scale of the left ordinate in C, control population,
compared with the scales of A and B. Open circles, accuracy when
stimulus contrast is inferred without including an a priori prob-
ability based on the frequency of occurrence of different contrasts
in natural images; dots, accuracy when the inference is influ-
enced by such prior knowledge; dashed curve (right ordinate) is
the distribution of contrasts in natural images, the prior prob-
ability distribution (redrawn from Fig. 2).
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Table 1. Summary of the Overall Performance of the Various Models of Contrast Coding

Cat Monkey Control
No Priors Priors No Priors Priors No Priors Priors
Total area® 1606 1769 1493 1674 1599 1642
Percentage area 85 87 85 85 44 49
under P(c) peak® (%)
Mutual 2.40 2.35 2.20 2.19 2.12 2.12
information/bits®

“Area (in arbitrary units) under the accuracy curves of Fig. 3 in the contrast range 0.001 to 1.0.
b Percentage of the total area that falls in the contrast range 0.0186 to 0.295 (the range of contrasts for which probability of occurrence is greater than or

equal to half of the maximum probability).

¢Mutual information between inferred contrast and actual contrast when the models are stimulated with contrasts drawn from the distribution of con-

trasts in natural images.

of the priors does improve overall accuracy. The cat and
monkey populations have a much greater proportion of
the total accuracy concentrated around the peak of the
distribution of contrasts in natural scenes, even in the no-
priors condition (85% for both the cat and monkey com-
pared with 44% for the control). This means that if, in-
stead of presenting each stimulus contrast an equal
number of times, one were to present stimulus contrasts
with a frequency weighted by their frequency of occur-
rence in natural scenes, the cat and monkey populations
would outperform the control population. This is the
condition being tested when we calculate the mutual in-
formation between the natural scene contrasts and the
model responses [Eq. (11)]. Table 1 shows the mutual in-
formation for the three model populations of neurons,
with and without inclusion of the priors. In fact, these
values show rather little difference in mutual information
for the various models, although the rank order seems
correct: The model of cat neurons gives the greatest ac-
curacy and the highest mutual information, while the
control model is least accurate and shows the lowest mu-
tual information.

Adding priors to the simulation does not bring about a
substantial change in the proportion of the accuracy curve
under the P(c) peak for any of the animal models, though
this value does increase in the case of the control model.
Priors do not make a great difference to the mutual infor-
mation sum.

4. DISCUSSION

We have modeled how populations of VI neurons might
encode the contrasts found in natural scenes and esti-
mated how accurately each contrast would be encoded.
Model populations of cat and monkey V1 neurons produce
accuracy graphs that closely follow the estimated distri-
bution of contrasts in natural images P(c). This is
largely because the steep portions of the neurons’
contrast-response functions tend to occur around the con-
trasts most commonly encountered in natural scenes,
rather than being evenly spaced across the contrast con-
tinuum. Most neurons have their semisaturation con-
trast (c5p) within half a log unit of the most frequently en-
countered contrast (0.1).

It is tempting to say, then, that the specific clustering of
animal cj values around a contrast of 0.1 is an adapta-

tion to the task of encoding natural contrasts; or, in other
words, that the selection of a particular cjq distribution
might be a way in which the brain can build in prior
knowledge of natural scenes when making decisions
about contrast. This follows from the observation that
including prior probabilities [P(c)] in our control model
(with evenly spaced c5,) shifts the accuracy peak closer to
the P(c) peak, whereas for the models of cat and monkey
neurons, accuracy is maximum at the P(c) peak even be-
fore explicit inclusion of prior probabilities. That is to
say, there is a similarity between the effects of priors on
the control model and the properties, without explicit pri-
ors, of the mammalian models. This matching of perfor-
mance with stimulus is the desired effect of prior knowl-
edge because, given finite coding resources, it results in a
code which performs best in the conditions most common
in the natural environment.’> In the case of contrast
coding, V1 neurons will provide the most reliable descrip-
tion of the contrast of edges or of other features when they
are at their most usual contrast levels. This matching
could arise genetically or developmentally through early
cortical plasticity, as for other stimulus dimensions.?>?*
One should, however, bear in mind the experimental
finding®%% that the exact value of c5, adapts to the range
of contrasts with which the neuron is being stimulated in
the experiment. For example, presenting a series of low-
contrast gratings will result in the measurement of a
lower ¢y than found if stimulating is with high contrasts.
In this paper, we have used values of ¢, taken from neu-
rons stimulated over the whole contrast range. If neu-
rons were presented with a set of gratings with contrasts
chosen in proportion to their occurrence in natural scenes,
we might expect that the c5y's would show even more
clustering around a contrast of 0.1 and an even more con-
vincing match between V1 c¢5y’s and natural contrasts.
This conclusion as to the match between c5, and the
distribution of contrasts in natural scenes follows from
observing the shape of the accuracy curve, and further
consideration should be given to the appropriateness of
the accuracy metric that we have proposed. This par-
ticular accuracy measure [Eq. (10)] was devised to be
equivalent to the inverse of the variance of the model’s
contrast guesses (in log space) around the correct value.
The measure was thought to be appropriate for a stochas-
tic model such as this, where the model’s answers will
form a distribution around the correct value and the vari-
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ance is a measure of how far from this value the model
answer tends to be.

An absolute measure, such as the percentage of trials
in which the model gives the correct answer, would not be
appropriate because the model is so rarely exactly right
(at best, on 7% of trials for the animal ¢ 5, populations and
on 5% for the control population), though it guesses with
greater and lesser degrees of error information that is lost
to the absolute measure. Even so, the percentage-
correct-versus-contrast plot resembles the accuracy curve,
with a flat curve for the control population and a bell
curve peaking around 0.1 for the animal c¢5, populations.
These similarities can be seen in other measures such as
the inverse standard deviation, although the spread of
the curve may change. Therefore, we argue, it is appro-
priate to use the shape of the accuracy curve (especially
its peak) as an indication of fitness to natural-scene sta-
tistics.

Another means of assessing the fitness of the pooled
neural responses to the distribution of contrasts in natu-
ral scenes is to plot the contrast-response function of the
population, normalized to a maximum of 1, together with
the cumulative distribution of contrasts in natural
scenes.?® If the responses are well matched, the curves
should overlie. Elsewhere*? we present the finding that,
for our model, the match to the cumulative P(c) curve is
good if one plots the square root of population response
(equivalent to the signal-to-noise ratio in our multiplica-
tive noise model). This finding agrees with those in-
ferred from the shape of the accuracy plot.

In this paper we present the mutual information be-
tween natural-scene contrasts as a quantitative measure
of the neural code’s fitness, and the model output is be-
tween 2.1 and 2.4 bits for all ¢5q populations. These val-
ues are concordant with the results of a psychophysical
experiment performed in our laboratory (D. J. Tolhurst
and J. Brown, unpublished observations) which found hu-
mans capable of correctly identifying the contrasts of
7.93-cycle/deg gratings to just four contrast levels (i.e., 2
bits).

The mutual information does not show a great differ-
ence between the mammalian and the control popula-
tions: 0.3 and 0.1 bits for the cat and monkey popula-
tions, respectively. This is a rather small improvement,
even bearing in mind that information is a logarithmic
measure, and it is probably due to the fact that the con-
trol population has quite good accuracy over virtually all
of the contrast range. It therefore outperforms the cat
and monkey models at all contrasts except for the critical
1-log-unit range centered about a contrast of 0.1. Some
of these contrasts, though not at the peak of the P(c) dis-
tribution, occur frequently enough to boost the mutual in-
formation sum in favor of the control model. Still, the
mammalian populations do seem to have an advantage
over the control, and it may well be the case that there is
evolutionary benefit for improvements in coding efficiency
that are actually quite small in terms of mutual
information.?’

It is interesting that explicitly including priors in the
simulations makes little difference to the accuracy plots
and virtually no difference to the mutual information fig-
ures. But note that the prior probabilities are never very
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small even at the contrast extremes; the tail at low con-
trasts is quite shallow. Then, because of the multiplica-
tive pooling rule, the effect of the prior probabilities is de-
pendent on the number of neurons. That is, priors
become less ‘effective’ with a population of model neurons
because the prior distribution becomes just one part (out
of 17 in our models) of a long product of individual neuron
likelihood distributions. In order to avoid the depen-
dency of the effect of priors on n (the number of neurons)
one might be tempted to use the following in place of Eq.
(9):

P(c|r) = P(c|r)*P(c)", (12)

which follows from a more direct interpretation of Bayes’s
rule [Eq. (1)]: the cue provided by each neuron is
weighted by the prior probabilities. However, this re-
sults in an accuracy plot which tends to spike at the peak
in the priors distribution and, as the number of neurons
increases, this plot becomes identical for all c¢5, popula-
tions, suggesting that the actual responses of the neurons
are lost in favor of overreliance on the raised power of the
prior information. As this is not a desirable outcome, a
compromise might be to use

P(c|r) = P(c|[r)*P(c)™", (13)

where a is the fixed number of neurons to be multiplied by
the priors, and n would have to be evenly divisible by a.
This formulation could increase the efficacy of the priors
but the choice of @ would be totally arbitrary, as is the
choice of n, which was taken to be 16 for all of our simu-
lations.

We modeled the contrast-response functions of all
the neurons as having the same maximum firing rate
(10 action potentials) and the same steepness parameter
(g = 2). We investigate the effects of these parameters
elsewhere.*? A different choice of maximum firing rate
would change the accuracy and information values that
we cite, but it would not change the comparative behavior
of the models nor our conclusions about the effects of
explicit inclusion of prior probabilities in the decision
rule. We chose ¢ = 2 because this is very close to the
mean value actually found?* and it is interesting
theoretically.?¢38

Figure 1B shows that there are significant numbers of
neurons in monkey V1 with ¢5,’s from 1 to 12.3% These
contrast values are literally impossible to achieve with
sinusoidal gratings (the experimental tools used to study
the neurons). These neurons could not have had ¢ as
large as 2, or they would not have generated responses to
achievable contrasts of less than 1.0 in the experiments.
This reminds us that real neurons may differ quite mark-
edly from each other and that it is a great simplification
to model all the neurons as having the same “average” be-
havior.

It would be feasible to model a population of cat or
monkey neurons in which all the parameters for the
Naka—Rushton equation (2) are taken from neurophysi-
ological data (i.e., for the case where each model neuron
represents a particular unit whose contrast responses can
be fitted by the Naka—Rushton). It would be interesting
to see whether such a model has increased mutual infor-
mation or a better fit to the natural-scene contrasts curve.
The focus of this paper has been on the effects of priors
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and the c;5y parameter, and in this case including such ex-
tra detail would make the interpretation of the model re-
sults more difficult. For example, one would not know if
the shape of the accuracy curve were due to a difference
in ¢ across neuronal populations or to the combined dif-
ferences of a number of parameters.

Another of our simplifying assumptions is that all
model neurons are optimally tuned to the stimuli, and
that there is no uncertainty about the stimulus param-
eters other than contrast. This assumption is probably
not relevant to the conclusions drawn about the animal
c 50 distribution because it has been shown experimentally
that ¢5, remains constant under optimal and nonoptimal
stimulus conditions.?* That is, the contrast-response
function of a neuron presented with a stimulus to which it
is poorly tuned will begin to respond and will saturate at
the same contrast as the contrast-response function un-
der optimal stimulation, but at a lower maximum firing
rate. To model such an effect, one would need only to add
another set of neurons with lower R, than the others
without altering the c5o distribution. The resulting am-
biguity as to whether a low firing rate is due to a low con-
trast or a suboptimal stimulus can be resolved by compar-
ing firing rates across the groups of neurons.

When discussing these results one must bear in mind
that contrast identification is one of many tasks in which
V1 neurons will be engaged, and it may well be one of the
less ecologically relevant ones. To illustrate: An edge
feature will have an orientation and width as well as a
contrast. If an animal’s task is to recognize the object of
which that feature is a part, accurate representation of
orientation and spatial frequency will probably be more
important than accurate contrast identification. So if
there is a trade-off between accurate orientation and
spatial-frequency coding versus contrast—which will
arise given that contrast is best coded while the neuron is
in the steep part of the contrast curve, whereas other fea-
tures may be best coded when the neuron is saturating—
contrast will lose out. The psychophysical finding men-
tioned above, that humans perform poorly in a contrast-
labeling task, suggests that this is the case in human vi-
sion.

5. CONCLUSIONS

This paper has described a Bayesian approach to the
study of the V1 contrast code. Such considerations as se-
lection of model neuronal parameters and implementa-
tion of prior knowledge put into sharp focus the problem
of the biological implementation of Bayesian analysis:
How is it that the brain could retain knowledge of prob-
ability distributions or apply the maximum a posteriori
rule? The prior-knowledge interpretation of cz—the
model parameter found to affect significantly the fit of
model performance to natural-scene statistics—is inter-
esting precisely because it suggests a way in which the
brain can conduct one part of the Bayesian analysis.
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