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abstract
Theories of causal explanation are often championed because they make
obvious the connection between scientists’ explanatory practices and their
ability to manipulate objects and processes in the natural world. In the
philosophy of neuroscience, much attention has been paid to mechanistic
explanations, both in terms of their theoretical virtues, and their applica-
tion in potential therapeutic interventions. Non-mechanistic, non-causal

* mac289@pitt.edu.
This is the penultimate version of a chapter forthcoming in Explanation Beyond Causation (eds.
Alex Reutlinger and Juha Saatsi, Oxford University Press). I would very much like to thank
Peter Sterling and the editors of the volume for many thoughtful comments which have helped
me to improve this contribution.
Note to reader: in order to meet the word limit the final version of the chapter leaves out much of the
detail on the development of theories lateral inhibition, and most of the long quotations are gone. I’ve
left them in this version, in case you are interested in following up the historical material. This version
was not thoroughly edited, so awkward sentences and typo’s abound.

1



introduction 2

explanatory models, it is often assumed, would have no role to play in any
practical endeavours. This assumption ignores the fact that many of the non-
mechanistic, explanatory models which have been successfully employed
in neuroscience have their origins in engineering and applied sciences,
and are central to many new neuro-technologies, such as brain computer
interfaces. In this chapter I present a case study of the development of
explanations of lateral inhibition in the early visual system as implementing
an efficient code for converting photoreceptor input into a data-compressed
output from the eye to the brain. I discuss two applications of the efficient
coding approach: in streamlining the vast datasets of current neuroscience
by offering unifying principles, and in building artificial systems that
replicate vision and other cognitive functions. I also argue that efficient
coding models can fruitfully be employed in the task of defining neural
computation.

1 introduction
Recent philosophy of neuroscience (since circa 2000) has been dominated by
discussion of mechanisms. The central proposal of work in this tradition
is that explanations of the brain are crafted through the discovery and
representation of mechanisms. Another core commitment is to explanation
being a matter of situating phenomena in the causal structure of the world.
This is often accompanied by a commitment to an interventionist theory
of causation and causal explanation. Accordingly, a criterion of explanatory
sufficiency is the ability of a theory or model to tell us how our phenomenon
would be altered under different counterfactual scenarios—the ability to
answer what-if-things-had-been-different- or w-questions (Woodward, 2003).

Various authors believe that it is useful to de-couple the counterfactualist
parts of Woodward’s account of explanation from the causal, interventionist
ones and thereby develop an account of non-causal explanation. One thing
that might seem puzzling about this move is that it extends Woodward’s
framework in such a way as to apparently divorce scientific explanation
from the demands of working out how to intervene successfully in the world.
The tight connection between causally explaining and making a difference
was originally one of the selling points of Woodward’s account (Reutlinger,
2012). Yet if an explanation fulfills the counterfactualist, but not the
interventionist norms, it can seem hard to find a point to the investigation
beyond theoretical speculation. For when one learns of a non-causal
explanation of, say, patterns of spiking and non-spiking activity in a neuron,
one is not thereby learning of the specific “levers and pulleys” which would
allow one to impede a pathological kind of neuronal behaviour, such as
underlies epileptic disease.

See Bokulich (2008), Bokulich (2011), Saatsi and Pexton (2013). As Woodward (forthcoming, 5)
puts it, “a successful explanation should identify conditions that are explanatorily or causally
relevant to the explanandum: the relevant factors are just those that ‘make a difference’ to the
explanandum in the sense that changes in these factors lead to changes in the explanandum”.
If the “changes” are brought about by interventions, then we have causal explanation; if they
cannot be understood in this way (e.g. because they involve changes in the laws of mathematics)
then we have non-causal counterfactualist explanation.
I thank Anna Alexandrova for raising this issue. Even though the interventionist theory
of causation only need refer to hypothetical interventions, not actual ones, advocates of
interventionism often highlight the connection between this way of thinking about causation
and the practice of figuring out ways to alter the course of natural events. E.g. Kaplan and
Craver (2011, 602).
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I have recently argued that the w-question criterion can be satisfied by
models of neural systems which are non-mechanistic (Chirimuuta, 2014)
and non-causal (Chirimuuta, forthcoming). I refer to these as efficient
coding explanations. Such explanations occur frequently in computational
neuroscience—a broad research area which uses applied mathematics and
computer science to model neural systems. The models in question
ignore biophysical specifics in order to describe the information process-
ing capacity of a neuron or neuronal population. Such models figure
prominently in explanations of why a particular neural system exhibits
a characteristic behaviour. Neuroscientists formulate hypotheses as to
the behaviour’s role in a specific information-processing task, and then
show that the observed behaviour conforms to (or is consistent with) a
theoretically derived prediction about how that information could efficiently
be transmitted or encoded in the system, given limited energy resources.
Typically, such explanations appeal to coding principles like redundancy
reduction (See Section 3.2 and Footnote ). They do not involve decomposition
of biophysical mechanisms thought to underlie the behaviour in question;
rather, they take an observed behaviour and formulate an explanatory
hypothesis about its functional utility.

It is worth saying a word about the notion of “efficiency” in play here. A
feature of this research is that neuroscientists draw on knowledge of man-
made computational systems and attempt to “reverse-engineer” the brain,
looking for the “principles of neural design” (Sterling and Laughlin, 2015).
A basic fact is that information processing makes substantial demands on
resources, both in terms of the material required to build a computer or
nervous system, and the energetic cost of running the system. It is assumed,
reasonably, that the explanation of many features of neural systems can
be derived from consideration of resource constraints—the need to achieve
good computational performance in spite of a relatively small resource
budget. As Attwell and Laughlin (2001, 1133) write:

The neural processing of information is metabolically expensive.
Although the human brain is 2% of the body’s weight, it accounts
for 20% of its resting metabolism . . . . This requirement for
metabolic energy has important implications for the brain’s
evolution and function. The availability of energy could limit
brain size, particularly in primates . . . , and could determine a
brain’s circuitry and activity patterns by favoring metabolically
efficient wiring patterns.

It is important to note that efficient coding explanations do not rely on
the strong adaptationist assumption that the brain of humans, or any other
animal, is somehow optimal. Instead, the point is to show that an observed
feature has similarities with a theoretically predicted optimum, though
there may be substantial departures from optimality due to structural or
other constraints. Barlow (1961a, 224) gives a useful statement of this
methodological policy:

the safe course here is to assume that the nervous system is
efficient. If it is clearly demonstrated that the nervous system

This passage from Doi et al. (2012, 16256) encapsulates the idea: “It has been hypothesized
that the early stages of sensory processing have evolved to accurately encode environmental
signals with the minimal consumption of biological resources . . . . This theoretical hypothesis,
generally known as efficient coding, has been used to explain a variety of observed properties
of sensory systems.” And see references therein.
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is inefficient in some particular well-defined way, this can quite
easily be incorporated into the hypothesis and its implications
correspondingly modified, whereas our whole frame of thought
might be undermined if it turned out that the nervous system
was more efficient than we had supposed.

In this chapter I argue that efficient coding explanations have important
roles to play in various kinds of practical activity. There are more ways
to make a difference than facilitating and preventing causal effects; one
may also wish to build things. There is a close and historically embedded
connection between engineering and the research traditions in neuroscience
which typically employ efficient coding reasoning. Thus we find numerous
instances of efficient coding reasoning in attempts both to reverse engineer
the nervous system and to forward engineer devices which replicate some
of the functions of the biological brain.

In the next section I will outline some of the specifics of efficient coding
explanation, and present my criteria for non-mechanistic and non-causal
explanation. After that I will focus on the specific case of models of lateral
inhibition in the early visual system (Section 3), following with discussion
of two important applications: in scaling the so-called data mountain
(Section 4.1) and in building artificial computational systems (Section 4.2). I
also argue in Section 4.3 that models of this sort can fruitfully be employed
in the task of defining neural computation.

2 efficient coding explanation and the
causal/non-causal frontier

Holly Andersen offers many useful reflections on the much contested
frontier between causal and non-causal explanation. Causal explanation
is often defined broadly as the placing of the explanandum phenomenon
within the network of causal relationships in the world. A more stringent
definition asserts that for an explanation to be causal, the connection
between the explanans and explanandum must be a causal one (Andersen,
forthcoming, 4). This would rule out constitutive mechanistic explanation,
since in those cases the relationship between the entities and activites of
the explanans, and the explanandum phenomenon, is one of constitution
rather than causation. This strikes me as a problematic feature of Andersen’s
narrow definition. As I see it, constitutive mechanistic explanations where
both explanans and explanandum are characterised as a set of causal
relationships, should count as a kind of causal explanation. The important
point is that the explanandum is doing something which brings about the
explanans. As Kaplan and Craver (2011, 611) put it, it is important to see
how the mechanism “produces, maintains, or underlies the phenomenon”.

The lesson here is that there is a difference worth marking between
mechanistic and aetiological explanation, but that does not mean that
mechanistic explanation is non-causal—it is simply a different kind of
causal explanation. By focussing on the relationship between explanans

For more on the historical links, see Husbands and Holland (2008) on the Ratio Club (1949-
1958). This was a small scientific society consisting of neurobiologists, mathematicians,
psychiatrists and computer engineers who were concerned with application of the new
formalisms and concepts of information theory and cybernetics in the understanding of brain
and behaviour. Donald MacKay and Horace Barlow were two members who have had a
foundational influence on theoretical and computational neuroscience.
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Figure 1: Four Kinds of Explanation. In each case the explanandum, depicted at the
top, is a biological phenomenon. (a) Aetiological Explanation: smoking is
said to cause the explanandum (lung disease). (b) Mechanistic Explanation:
ion channels opening and closing in response to changing membrane
potential is said to constitute the explanandum (action potential). (c)
Mathematical Explanation: the explanans is a mathematical fact (the
Honeycomb Conjecture) and it can be thought of as constraining the path
of evolution towards the optimal solution to the bees’ storage problem. (d)
Efficient Coding Explanation: the explanans is an abstract coding scheme
which is said to be implemented by the actual retinal circuit.

and explanandum we can chart these and other kinds. In each of the
four examples depicted in Figure 1, the explanandum is a biological
phenomenon. In the cases of (a) aetiological and (b) mechanistic explanation,
the explanantia are also phenomena which can naturally be described as
a series of causal processes. I classify these as two species of causal
explanation. In (c) we have the non-causal, mathematical explanation of
the hexagonal shape of honeycomb. The explanans is a law or fact of
mathematics—the honeycomb conjecture proved by Hales (2001)—rather
than an empirically observable causal process. One cannot speak of the
mathematical facts as causing anything to happen in nature, though they
do constrain the sequence of biological events.

The fourth kind, (d) efficient coding explanation, is clearly different from
mechanistic and aetiological explanation in that the explanans is an abstract
coding scheme or algorithm, rather than an empirically observable causal
process. Also, the relationship between explanans and explanandum is one
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of implementation rather than causation or constitution. Thus I classify it as
a kind of non-aetiological and non-mechanistic explanation. One important
point, though, is that unlike in the case of mathematical explanation where
the explanans must be a “modally strong mathematical fact”, it is often
natural to think of the coding scheme in quasi-causal terms because it
describes an input-output function and the series of steps needed to go from
on to the other. That said, the coding scheme or algorithm is not a set of
empirically observable causal relationships, and can also be thought of as an
abstract mathematical object. Thus I am reluctant to classify computational
explanation, as a general kind, as distinctively mathematical or either causal
or non-causal.

In the cases of efficient coding explanation that I will discuss in this
chapter, the neural system is said to implement a specific code or coding
strategy, and this reasoning yields insights into why the system behaves
in the ways observed. To take an example which I discuss at greater
length elsewhere (Chirimuuta, forthcoming, §2), it has been argued that the
nervous system implements hybrid computation—a manner of processing in-
formation which alternates between analogue and digital codes (Sarpeshkar,
1998). One property of hybrid computation is that it is energy efficient,
using little power for each bit of information processed, in comparison
with digital computation, while being less easily impacted by noise than
purely analogue computation. Sarpeshkar argues that the implementation
of hybrid computation explains how biological brains can consume orders
of magnitude less energy than man-made supercomputers, while being
equivalent in computational capacity.

Here the explanandum is a particular behaviour or feature of a neural
system, namely the economy with which nervous tissue consumes energy.
The explanans is a coding scheme, an abstractly characterised method of
performing computations which has certain properties of its own, such as
economical consumption of resources. There are mathematical frameworks,
such as information theory, which tell us why the explanans has the
property of interest. Physiological data are offered to provide evidence that
the neural system implements the coding scheme. It is then argued that
the reason why the neural system has the property of interest is that it is
an implementation of the coding scheme theoretically shown to have this
property. We then have an explanation of why the nervous tissue has the
property in question.

This explanation is non-mechanistic because it does not proceed by de-
composing the neural system and describing how the different component
parts interact to give rise to the explanandum phenomenon [Machamer
et al. (2000), Bechtel and Richardson (2010)]. This idea that mechanistic
explanations work by tracing the causal relationships between components
of a tightly knit biological system is also encapsulated in the “models to
mechanism mapping” (3M) criterion:

In successful explanatory models in cognitive and systems
neuroscience (a) the variables in the model correspond to com-
ponents, activities, properties, and organizational features of the
target mechanism that produces, maintains, or underlies the
phenomenon, and (b) the perhaps mathematical dependencies
posited among these variables in the model correspond to the

For the purposes of this paper I will bracket the vexed philosophical debate over the proper
analysis of this term, noting that it is the concept of implementation is employed widely within
neuroscience. But see Sprevak (2012) for an excellent discussion of the philosophical issues.
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perhaps quantifiable causal relations among the components
of the target mechanism. [Kaplan and Craver (2011, 611), cf.
Kaplan (2011, 347)]

The 3M criterion was introduced as part of an argument that all genuinely
explanatory models in computational neuroscience are mechanistic ones. It
is important to study efficient coding models because we find cases of ex-
planation without 3M-style mapping (Chirimuuta, 2014, 145). For example,
with hybrid computation, we are not told how particular components of the
coding scheme relate to a neural system, as unearthed through physiological
and anatomical study.

One might object that implementation is itself a kind of mapping
relationship, and so efficient coding explanations satisfy the 3M criterion
for mechanistic explanation. However, this argument misses the point
that the central feature of mechanistic explanation is the tracing of causal
relationships between the components of the explanans—the presentation
of a mechanistic description—and showing how this set of relationships
is responsible for some of the causal properties of the explanandum
phenomenon. In the case of efficient coding explanation, the explanans itself
(not just the representation of it) is a mathematical object, namely, a coding
scheme or algorithm; the explanans is not a set of entities and activities in
a biological system. Moreover, the relationship of implementation is not
the constitutive one that is required for mechanistic explanation.We cannot
say that the coding scheme “produces, maintains, or underlies” the neural
phenomenon; instead, the neural system is just an instance of the coding
scheme, realized in biological hardware.

Even if efficient coding explanations are non-mechanistic, one may still
wonder if they are causal. Here things become a little complex. As has been
noted elsewhere, when scientists present explanations of evolved systems
which are subject to biological, physical, and mathematical laws, different
kinds of explanations often rub-shoulders and one can shift between causal
and non-causal explanations with subtle changes in the specification of the
explanandum [Chirimuuta (forthcoming); Andersen (forthcoming)]. For
example, the explanation of why honeycomb is hexagonally shaped must cite
both the causal biological facts that there is evolutionary pressure on
honeybees to maximize storage volume and minimise building materials
in making comb, as well as the mathematical argument that a hexagonal
structure is the one which achieves this aim. However, the explanation
of why honeycomb is the best structure, given the bees’ needs is “distinctively
mathematical” (Lange, 2013, 499-500). In the case of hybrid computation,
there is a causal (biological) explanation of why economy of computation
is such an important factor in explaining nervous systems, whereas the
explanation of why hybrid computation is optimal for biological brains is
a non-causal one, based on principles of information theory (Chirimuuta,
forthcoming, §2).

Before closing this section I would like to point out that all four kinds of
explanation have the resources to answer what-if-things-had-been-different
questions. In the case of mechanistic and aetiological explanation, we
can conduct (real or hypothetical) experiments on the biological systems
and observe how interventions on the explanans result in changes to the
explanandum. While no-one could intervene on the laws of mathematics,

I say this because in the case of mechanistic explanation the mechanistic description may be
presented as a mathematical equation, which is a representation of concrete entities and the
causal processes occurring amongst them.
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Figure 2: Receptive Fields of Retinal Ganglion Cells. If light falls on the excitatory
centre of an ON cell, firing rate will increase, whereas rate decreases if
light falls on the inhibitory surrounding area. The polarity of responses is
reverse for OFF cells.

mathematical explanations do yield counterpossible information about how
things would be different under these impossible scenarios (Baron et al.,
ming). Efficient coding explanations address w-questions by telling us
how things would be different under a range of either counterfactual and
counterpossible scenarios. I will now present an extended example of
efficient coding explanation in neuroscience, and then discuss its actual and
potential applications.

3 lateral inhibition and explanations of
early visual responses

Retinal ganglion cells (RGC’s) are the “output” neurons of the mammalian
retina. It has long been observed that these neurons have a centre-surround
receptive field (RF) organisation. For an ON-centre RGC, when light falls
in a certain small, circular area of the visual field, the neuron’s rate of
firing will increase; and if light falls in the wider area surrounding the
centre, then the firing rate will tend to decrease. OFF-centre RGC’s have
the same concentric receptive field organisation, but with opposite polarity.
See Figure 2.

The Difference-of-Gaussian (DoG) function is commonly used to model
the RF shape. For an ON-centre cell, the first Gaussian function describes
the response of the excitatory centre, with A1 (height of Gaussian) being the
cell’s maximum response and σ1 (spread) describing the spatial extent of the
centre. The second Gaussian function, modelling the inhibitory surround,
is subtracted from the first. The strength of inhibition is described by A2,
and this takes a lower value than A1. σ2 describes the spatial extent of the
inhibitory surround, which takes a greater value than σ1. The DoG model is
a two dimensional, circularly symmetrical function in the x,y plane, centred
at (0, 0):

F(x,y) =
A1

2πσ21
exp

(
−
x2 + y2

2σ21

)
−

A2

2πσ22
exp

(
−
x2 + y2

2σ22

)
(1)

In his discussion of the DoG function, David Kaplan argues that it is a
phenomenological model with high predictive and descriptive value but
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lacking explanatory force. Explanations of the neurons’ responses, it is
argued, will be arrived at once we have modifications of the model which
include mechanistic detail:

Transforming the DOG model . . . into an explanatory mecha-
nistic model involves delimiting some of the components and
some of the causal dependencies among components in the
mechanism responsible for producing the observed structure of
the receptive fields, along the lines indicated by 3M. One way
to do this, for instance, would be to supplement the model with
additional terms corresponding to various components in the
retinal . . . circuit giving rise to the observed response properties
of ganglion . . . neurons. (Kaplan, 2011, 360)

Kaplan then references two neuroscientific articles on the retina which
proceed in this direction. In contrast with this mechanist perspective
on the system, I will discuss a tradition of research which explains
the neurons’ response properties in terms of the information processing
functions which they must perform. This approach proceeds not by adding
mechanistic detail to the DoG model but by interpreting it as implementing
a particular coding strategy. We should think of the approach as addressing
a very different kind of question from the one answered by mechansistic
neuroscience—the question of why neural systems have the properties that
are observed.

The first step is to introduce the concept of lateral inhibition. Sensory
neurons are said to exhibit lateral inhibition when excitation of one neuron
brings about inhibition of the responses of its neighbours. The centre-
surround RF’s of the retina are indicative of a circuit with lateral inhibition,
since the suppressive areas of the RF’s arise from the inhibitory inputs of
nearby interneurons whose RF’s are adjacent in the visual field. Lateral
inhibition in the retina is the standard explanation of the visual illusions
shown in Figure 3, and it is interesting to note that Ernst Mach posited
that the Mach Band illusion was caused by an antagonistic response
arrangement in the visual system nearly a century before direct neural
recordings were made.

This sounds like the description of a mechanism and one might think that
the explanation of Mach bands and the Hering grid would look to be a just
a mechanistic one. However, since the 1960’s neuroscientists have offered at
least three different non-mechanistic explanations for the presence of centre-
surround receptive fields and lateral inhibition in the early visual system.
These non-mechanistic explanations all refer to the information processing
task that has to be performed by the system, and they argue that lateral
inhibition serves an important function in the service of this task.

This is a similar contrast to the famous ‘how?’ vs. ‘why?’ division in biology. As Barlow
(1961b, 782) writes, Ratliff’s experiments on the crab’s eye “tell us a good deal about what
the lateral inhibitory mechanism does and something about how it does it, but there remains
a third question to ask. The fact that this mechanism has evolved independently in a wide
variety of sensory relays suggests that it must have considerable survival value: why is this
so?” Interestingly, this was published the same year as the institutionalistion of the proximate-
ultimate distinction by Mayr (1961).
See Ratliff (1965) and ?. The effects of lateral inhibition have been observed in other perceptual
modalities, like touch (von Békésy, 1967, 41-45).
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(a)$

(b)$

Figure 3: Visual Illusions Explained by Lateral Inhibition. (a) Mach Bands. Within
each of the broad vertical bands the grey level is uniform yet we perceive a
thin dark vertical strip near the border with a lighter band, and a thin
lighter grey strip near the border with a darker band. (b) Hermann
Grid. The dark spots at the intersections of the white crosses are illusory.
In both cases the illusory patterns are attributed to the presence of
inhibitory connections between retinal neurons. As Ratliff (1961, 195)
writes regarding the Mach bands, “A unit [whose RF is] within the dimly
illuminated region, but near this boundary, will be inhibited not only by
dimly illuminated neighbors but also by brightly illuminated ones. The
total inhibition exerted on such a unit will be greater, therefore, than
that exerted on other dimly illuminated elements that are farther from
the boundary; consequently its frequency of response will be less than
theirs . . . Thus the differences in activity of elements on either side of the
boundary will be exaggerated, and the discontinuity in this pattern of
illumination will be accentuated in the pattern of neural response.” Image
credit: Wikimedia commons.
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3.1 Edge Detection and Feature Sharpening

All of the efficient coding explanations of lateral inhibition that I will discuss
start with the idea that the early visual system must recode the input coming
from the photoreceptors and suppress the signals which are not of high
value to the downstream visual areas. One can think of the recoding by
analogy with image processing routines which reduce the file size of a
digital photograph. The data compression can either be “lossy” or “loss-
less”. The first two proposals regarding lateral inhibition differ crucially
in where they stand in the “lossiness” of the recoding. The edge detection
hypothesis supposes that lateral inhibition serves to detect and/or enhance
visual input that is most important to the downstream system—i.e. the edge
structure in the visual scene—at the expense of passing on the rest of the
input form the receptors. This is a lossy code because non-edge information
is supressed by lateral information and this information that is not signalled
could not be recovered by the downstream system.

This hypothesis is nicely summarised by Ratliff (1961, 183), one of the
neuroscientists who collaborated with Hartline on the seminal research on
the Limulus eye:

The interplay of excitatory and inhibitory influences over in-
terconnections within the retina yields patterns of optic-nerve
activity that are more than direct copies of the pattern of
external stimulation. Certain significant information is selected
from the immense detail in the temporal and spatial pattern of
illumination on the receptor mosaic, enhanced at the expense of
less significant, and only then transmitted to the central nervous
system.

Ratliff goes on to say that significant features are edges (“loci of transitions
from one intensity to another and from one color to another”) and
that lateral inhibition in the eye of the Limulus is “an integrative neural
mechanism which plays a role in the detection and enhancement of such
contours.”

Alongside edge detection, the notion of feature sharpening or enhance-
ment comes up in Ratliff’s discussion of the Mach Band illusion (see
Figure 3). As Ratliff (1961, 199-200) also writes,

These [inhibitory] interactions accentuate contrast at sharp spa-
tial and temporal gradients and discontinuities in the retinal
image: borders and contours become “crisp” in their neural rep-
resentation. Thus, the pattern of optic-nerve activity that results
is by no means a direct copy of the pattern of stimulation on
the receptor mosaic; certain information of special significance
to the organism is accentuated at the expense of less significant
information.

Barlow (1961a, 219) calls this the “password hypothesis”. In his book on inhibition in various
sensory modalities, von Békésy (a Hungarian physicist and physiologist with a background in
signal engineering) appears to endorse the proposal that lateral inhibition enables the selective
signalling of only important information. Speaking of the explosion of scientific information, he
writes that, “[s]urvival requires that we discard the unimportant portions of this information”
(von Békésy, 1967, 7). Mach appears as an early proponent of this hypothesis: “Since every
retinal point perceives itself, so to speak, as above or below the average of its neighbors, there
results a characteristic type of perception. Whatever is near the mean of the surroundings
becomes effaced, whatever is above or below is disproportionately brought into prominence.
One could say that the retina schematizes and caricatures.” Mach (1868), translated in Ratliff
(1965, 306)
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Other proponents of the edge detection explanation of lateral inhibition
are computer vision pioneers, Marr and Hildreth. Rather than beginning
with neuroscientific findings, their approach to vision enquires “directly
about the information processing problems inherent in the task of vision
itself” [Marr and Hildreth (1980, 188); Marr (1982)]. As they see it, the task
of the early visual system is to produce, from the raw photoreceptor input,
a “primal sketch” of features such as edges, bars and blobs. They show that
one way to achieve this is by processing the input image with “Laplacian of
Gaussian” filters, mathematical operators which find the areas of steepest
illumination change—typically the edges in the image. Their filters are very
similar to Difference of Gaussian functions used to model retinal ganglion
cell receptive fields, and are identical under certain parameter settings (Marr
and Hildreth, 1980, 207, 215-217). So their explanation of centre-surround
RF’s is that it serves the function of edge detection.

What kind of explanation of lateral inhibition is Ratliff’s, on the one hand,
and Marr and Hildreth’s, on the other? As I see it, we have a case of
functional explanation. We are told that the function of the early visual
circuits which show lateral inhibition and neurons with centre-surround
RF’s is to detect the edges that are present in the visual scene but are
not represented sharply enough in the first encoding at the photoreceptor
layer. This fits naturally within a causal framework—the system has the
features that it does because it evolved or developed to perform a specific
task. The other part of the story is that Marr and Hildreth (1980) present
a series of arguments and mathematical proofs to make the case that the
image processing steps performed by their Laplacian of Gaussian operator
is the optimal way to achieve the required representation of edges. In other
words, we have a mathematical and non-causal explanation of why having
neurons with the appropriate kind of lateral inhibition (which can be said
to implement Marr and Hildreth’s operator) is the optimal way to achieve
the desired task.

3.2 Redundancy Reduction

The locus classicus for explanations of sensory physiology in terms of
redundancy reduction is Horace Barlow’s (1961) paper, “Possible principles
underlying the transformation of sensory messages.” Barlow draws on
the influential article by Attneave (1954), which applies Claude Shannon’s
calculation of the redundancy of written English to the analysis of natural
visual stimuli. Information theory provides the mathematical framework
for thinking about neural signalling and redundancy. The basic idea is that
“sensory relays” (of which retinal ganglion cells are an example) operate to
recode information from inputs (ultimately—for RGC’s—the photoreceptor
layer), in such a way as to economise the consumption of resources (e.g.
number of neurons needed, and number of action potentials they fire on
average). One way to economise is to reduce the redundancy of the code by
eliminating signals which transmit information which is already known or
expected by the receiver—see Figure 4. More generally, (Barlow, 1961a, 230)
writes, “[t]he principle of recoding is to find what messages are expected

Though as (Barlow, 1961a, 223) notes, the idea was prefigured in the writings of Karl Pearson,
Kenneth Craik, Donald MacKay and Ernst Mach.
It bears emphasis that the uptake of information theory from the field of signal engineering
to psychology and neuroscience was very rapid. The founding work of information theory
(Shannon, 1948), and the paper on redundancy in English (Shannon, 1951) were published
only very shortly before Attneave (1954).
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“Light'Code”:'
Spike'count'propor5onal'
to'mean'pixel'brightness''
'
Blank'screen'='50'spikes'
'
Line'–'30'spikes'
'
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!
Contains!Redundancy!
'
'
'

“Re=Code”:'
Spike'count'propor5onal'
to'infrequency!of's5mulus''
'
Blank'screen'='0'spikes'
'
Line'–'30'spikes'
'
Cross'–'50'spikes'
!
Reduces!Redundancy!
'
'
'

(a)'
(b)'

Figure 4: Recoding to Reduce Redundancy. (a) Light Code. Since neural response
is proportional to mean pixel brightness, the blank screen will elicit the
biggest response. But since the blank screen is frequent, and to be expected
by the receiver of the signal, the spikes illicited by the blank screen are
redundant. (b) Re-Code. Now the neural response is proportional to the
infrequency of the stimulus. The blank screen is most frequent, so illicits no
response; the cross is most infrequent, so causes the biggest response; and
the response caused by the line is intermediate.

on the basis of past experience and then to allot outputs with few impulses
to these expected inputs, reserving the outputs with many impulses for the
unusual or unexpected inputs.”

We can see that the redundancy reducing code in Figure 4(b) is econom-
ical or efficient because it uses fewer action potentials to transmit the same
amount of information as the first code (a). Since action potential generation
is one of the major metabolic costs of the nervous system, it is reasonable to
hypothesise that the nervous system, where possible, will operate in such
a way as to minimise the number of spikes generate while maintaining the
same rate of information transmission. This is how Barlow (1961a, 226)
presents the hypothesis:

We may suppose that the [sensory] relay has a range of possible
codes relating input to output: the [redundancy reduction]
hypothesis says that, for a given class of input message, it will
choose the code that requires the smallest average expenditure
of impulses in the output. Or putting it briefly, it economizes
impulses; but it is important to realize that it can only do this on
the average; the commonly occurring inputs are allotted outputs
with few impulses, but there may be infrequent inputs that
require more impulses in the output than in the input.



lateral inhibition and explanations of early visual responses 14

Note that this is a lossless code. The idea is not that the early visual system
throws out, or makes unavailable, information that is there in the input
concerning the most probable stimuli, but that it does not waste resources
in signalling them to downstream receivers.

If we have reason to think that a neural system, like the retina, does in-
deed implement a redundancy reducing code, then we have an explanation
for its observed physiological properties, like the receptive field structure
of RGC’s. Evidence for the implementation of a particular coding strategy
can come in the form of physiological data about the system in question,
anatomical findings about circuit structure, and a theoretical arguments that
the observed neural system can carry out the computation described by the
coding scheme.

In a further article within the same volume as the “Possible Principles”
paper, Barlow presents his case that the redundancy reducing hypothesis
explains lateral inhibition in the retina. In answer to the question, why is
there lateral inhibition?, Barlow (1961b, 782) states:

The suggested answer is that it enables almost the same amount
of information to be transmitted with a smaller expenditure
of impulses. It is thus an example of a redundancy-reducing
code and confers the advantages that Attneave (1954) and I have
argued for.

The rest of the article is taken up with a demonstration that lateral inhibition
is an effective means of attaining redundancy reduction. This is via an
example of the processing of a photographic image in which the brightness
value of any small area has the local mean luminance value subtracted from
it, thus modelling the effect of inhibition in the retinal system. Barlow
observes of the resulting processed image that it retains almost all of the
information of the original (the edges and therefore the items in the scene)
while needing a much smaller range of brightness values to convey this
information. In other words information is compressed but not lost.

We should now consider what kinds of explanation the redundancy
reduction hypothesis provides. It strikes me that there are both causal and
non-causal dimensions. As apparent in Barlow’s discussion of the different
explanatory questions (see Footnote above), the redundancy reduction
hypothesis is intended to explain what the evolutionary value of lateral
inhibition is. Thus the resulting description of the information processing
challenge that the retina faces, and the evolutionary pressure towards
efficient coding, is a kind of (non-mechanistic) causal explanation. In a very
abstract way, it considers environmental conditions and selective pressures,
and proposes that lateral inhibition is a result of these factors. For example,
we are told that if there were no statistical regularities (spatial or temporal
correlations) in natural visual stimuli (in the evolutionary environment of
the animal) then the eye could not utilize a redundancy reduced code
and we would not expect to see lateral inhibition. On the other hand,
Barlow’s hypothesis also relies on the mathematical theory of information.

This fits the template of interventionist causal explanation. The redundancy reduction
hypothesis tells us that statistical regularities in the visual environment make a difference
to the coding schemes employed in the eye. One could perform a practically infeasible,
but not modally impossible, experiment where one observes the evolution of creatures in an
environment in which the only visual stimuli are random noise—i.e. no spatial or temporal
correlations between visual inputs. We would not expect to see the development of lateral
inhibition in early visual system. In fact, Barlow’s theory would probably predict the atrophy of
the visual system, since under these conditions there is literally no visual information provided
to the animal and so it cannot use this sensory modality to aid survival.
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The laws of information theory constrain the kinds of coding schemes that
are efficient, given the actual environment and needs of the animal. In a
non-causal sense, information theory ‘makes a difference’ to the kind of
algorithm that the early visual system can implement. What if the laws
of information theory were such that the system could reduce redundancy
by making spike count proportional to the frequency of stimuli? Then you
would not expect to have lateral inhibition because it would be efficient for
the system to signal mean luminance. There is no way to intervene on laws
of information theory, so this experiment is not even hypothetically possible.
Yet Barlow’s account gives us information about what would happen under
such counter-possible scenarios.

For the purposes of this chapter, it is not of paramount importance
whether this is a good explanation of retinal responses. One theoretical
reason for thinking that redundancy reduction is not the only “design
principle” which can explain the mammalian retina and other early visual
systems is the fact that redundancy reduction trades off against robustness
to noise. This is easy to see if we take the example of a telegraph message
being sent via an electric cable which experiences random fluctuations in
the current or voltage. This noise will result in an error in the decoding
of a proportion of the letters sent by the telegrapher. But because of the
redundancy within written English, up to a certain percentage of errors it is
still quite easy to reconstruct the intended message. In other words, the code
is robust to errors introduced due to noise. Since we know that neurons are
noisy, this is bound to put constraints on the coding schemes employed by
the nervous system. Our last explanation of lateral inhibition does explicitly
take noise into consideration.

3.3 Predictive Coding

Unlike the others discussed so far, Srinivasan, Laughlin and Dubs explicitly
compare their explanatory hypothesis about the function of lateral inhibi-
tion with the alternative proposals. Their claim is that we should think of
lateral inhibition as implementing a predictive code, and that this account

For evidence that the retina does not always follow a redundancy reducing strategy because it
fails to decorrelate the responses of neighbouring RGC’s, see Puchalla et al. (2005) but also Doi
et al. (2012). Barlow (2001) presents an extensive and deep criticism of his 1961 redundancy
reduction argument.
E.g. it is possible to infer that the message corrupted with an error rate of about 0.25, “Tve
Uing is Dqad, Lobg Yive bhe Queec”, means “The Kind is Dead, Long Live the Queen” because
of the redundancy of written English—i.e. “the amount of constraint imposed on a text in the
language due to its statistical structure, e.g., in English the high frequency of the letter E, the
strong tendency of H to follow T or of U to follow Q” (Shannon, 1951, 50). A telegraphic
code which removed redundancy would not transmit the letters that can be predicted from
our knowledge of the structure of English, such as an ‘h’ following a ‘t’ in the words ’the’ (just
as the redundancy reducing code in Figure 4(b) does not send a spike when it encounters the
most likely stimulus pattern. However, if this streamlined code were to be corrupted by noise
it would not be decodable.
(Puchalla et al., 2005, 501) write that, “While there has been a great focus on efficiency
as a fundamental design principle for neural codes, robustness is less well understood . . . .
Quantifying our intuitive notion of robustness, . . . , promises to enrich our understanding of
design principles in neural networks. Especially interesting will be to explore how redundancy
and efficiency trade off as the signal-to-noise ratio of visual stimuli changes.”
There has been much discussion in recent philosophy of mind of the proposal that predictive
coding provides a single unified framework for thinking about neural processing and cognitive
function. See Hohwy (2013) and Clark (2016). Note that the proposal here is much more
modest in that it only extends to one specific circuit, and much more concrete in that it tells
us exactly how the predictive code could be implemented by the circuit in question. One
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subsumes both the edge detection and redundancy reduction proposals.
These authors are neuroscientists whose research focuses on the visual
system of the fly which, like the horseshoe crab, has a compound eye, and
has neurons (large monopolar cells) with circular surround RF’s .

The predictive coding hypothesis is stated as follows:

The antagonistic surround [inhibitory area of the RF] takes
a weighted mean of the signals in neighbouring receptors to
generate a statistical prediction of the signal at the centre. The
predicted value is subtracted from the actual centre signal, thus
minimizing the range of outputs transmitted by the centre.
In this way the entire dynamic range of the interneuron can
be devoted to encoding a small range of intensities, thus
rendering fine detail detectable against intrinsic noise injected
at later stages in processing. This predictive encoding scheme
also reduces spatial redundancy, thereby enabling the array of
interneurons to transmit a larger number of distinguishable
images, taking into account the expected structure of the visual
world. (Srinivasan et al., 1982, 427)

The idea is that the surround portion of the neuron’s receptive field
measures local mean luminance, giving a prediction of what the luminance
will be in the centre. If this prediction is accurate, then the luminance value
at the centre will be exactly cancelled out by the inhibitory input to the
centre, and the cell’s firing will not increase. But if the central luminance
value diverges from the prediction, then it will overcome the inhibition and
a signal will be generated to say that something “surprising” is happening
in the centre. Unlike (Barlow, 1961a, 224), they also emphasise that lateral
inhibition, understood in their way, has advantages for systems like actual
neural ones, which have high intrinsic noise.

Srinivasan et al. (1982, 428) point out that the predictive coding idea
first came from television engineering, citing papers by Oliver (1952) and
Harrison (1952). The predictive coding hypothesis has recently been
employed by Sterling and Laughlin (2015, 249) in their comparison of early
visual processing in mammals and flies. They write that, “predictive coding,
an image compression algorithm invented by engineers almost 60 years ago
to code TV signals efficiently, is implemented in animals by a basic sensory
interaction”. Again, the idea is that we formulate an explanation of why
the neural circuit has an observed feature by showing that it implements an
algorithm known to be efficient—both in biological and artificial systems.

interesting point of comparison is that the recent philosophical literature does not, to my
knowledge, discuss efficiency arguments for predictive coding.
E.g. Srinivasan et al. (1982, 451) write: “in common with alternative functions of lateral
inhibition, edge detection and predictive coding are in no way exclusive. The more advantages
a given filtering or sampling procedure has, the better! The difference is that predictive coding
takes into account the qualities of the retinal image in order that it might be encoded within
the constraints imposed by neuronal signals. By comparison, edge detection isolates a single
characteristic of a scene, that can, through its spatial distribution, provide an adequate and
compact description, thought suitable for subsequent processing at higher levels.”
“Interneurons exhibiting centre-surround antagonism within their receptive fields are com-
monly found in peripheral visual pathways. We propose that this organization enables the
visual system to encode spatial detail in a manner that minimizes the deleterious effects
of intrinsic noise, by exploiting the spatial correlation that exists within natural scenes.”
(Srinivasan et al., 1982, 427)
Note that Sterling and Laughlin (2015) are not claiming that predictive coding can explain all
observed features of the retina or fly’s “lamina”. Their analysis goes into much detail about
different anatomical and physiological features at each layer of the retina and lamina, and
presents various efficient coding arguments to explain those observations.
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As in the previous two examples, there are both causal and non-causal
features to this explanation. Sterling and Laughlin (2015, 249) place much
emphasis on the tight energy budget of the central nervous system. This
is a causal explanation of neural design, which tells us that if the energy
budget were more ample, or if spikes cost fewer molecules of ATP, then
we could expect different circuits. Alongside this reasoning, there is the
mathematical argument that predictive coding is an efficient means to
transmit visual information. This reasoning explains why a neural circuit for
visual signal transmission, with a tight energy budget, would be constrained
to implement predictive coding through lateral inhibition.

3.4 Some Observations

Before moving on, I would like to say a few words about what we have
learned from this case study. I have sketched a historical narrative of
the development of contrasting efficient coding explanations of one neural
phenomenon, lateral inhibition, in order to make the case that this approach
has been an active area of research, alongside the mechanistic one, since the
very beginnings of physiological investigation of the visual system. In other
words, as soon as neuroscientists were able to measure the effects of visual
stimulation on specific neurons in the early visual system, and plot their
receptive fields, they began theorising about the functions of those RF’s and
discussing abstract coding schemes which could be said to be implemented
by the neural circuit. Researchers taking this approach have been very much
in the mainstream of visual neuroscience.

The other point I would like to make here is that in each of the cases
presented above, ideas about what the visual system was coding, and
why, have been inspired quite directly by work outside of neuroscience:
information theory and signal engineering, computer vision and television
engineering. Do origins of the efficient coding approach in engineering
shape the practical applications of its findings? How are the reverse
engineering of the brain and the forward engineering of brain-like machines
connected?

4 putting efficient coding explanations
to use

4.1 Scaling Data Mountain

Neuroscience does not suffer from a poverty of data. According to Hill
(2015, 113), the rate of publication in neuroscience has grown from 30,000

articles per year in 1990 to 100,000 per year in 2013. What’s missing is the
means for neuroscientists to streamline and consolidate the deluge of results
so that it is clear to each subfield what is known and what is not known.

At the beginning of their recently published book on the efficient coding
approach to neural systems, Sterling and Laughlin (2015) are clear that
they see their work as offering ways to digest the surfeit of data—or to
switch to their metaphor, to climb the mountain of data. Their strategy
is to articulate a small number of “organizing principles” that afford
efficient coding explanation of diverse features of biological information
processing in organisms spanning the chain of being, including bacteria,
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flies, and human brains. Many of these “design principles” come directly
from engineering and information theory, while others are based on direct
measurement of the cost of information processing in biological tissue. The
basic idea is that by focussing on the information processing function of
neural systems, scientists will be better able to discern the really important
phenomena against the background of extraneous mechanistic detail.

Interestingly, this motivation for the efficient coding approach was already
stated by (Barlow, 1961a, 217).

A wing would be a most mystifying structure if one did not
know that birds flew. . . . [W]ithout understanding something of
the principles of flight, a more detailed examination of the wing
itself would probably be unrewarding. I think that we may be at
an analogous point in our understanding of the sensory side of
the central nervous system. We have got our first batch of facts
from the anatomical, neurophysiological, and psychophysical
study of sensation and perception, and now we need ideas about
what operations are performed by the various structures we have
examined. . . .

It seems to me vitally important to have in mind possible
answers to this question when investigating these structures, for
if one does not one will get lost in a mass of irrelevant detail and
fail to make the crucial observations.

From our study of lateral inhibition we can already see how efficient
coding explanations can be used to streamline and consolidate neurosci-
entific facts. As pointed out above, the eyes of mammals, crustaceans and
insects vary quite considerably in their anatomical and physiological details.
By focussing on the what? and how? questions one could get lost in the
mechanistic detail of each eye’s neural circuit: the layout of the neurons,
their dendritic arbors and activity patterns. In contrast, if one focusses
on the question of why the neurons of a particular eye form an inhibitory
network, and formulates an efficient coding explanation, the mechanistic
details recede to the background and the similarities across mechanistically
diverse systems become apparent. The key explanandum phenomenon is
the kind of information processing that the inhibitory network affords, and
since the explanans is an abstract coding scheme we need not worry too
much about the details of biological implementation in each case (so long
as a proposed implementation is not inconsistent with the known data).

This has echoes of the idea that explanation proceeds by showing that
a set of seemingly unrelated phenomena can be unified with the same
explanatory model or theory (Kitcher, 1981). In fact, this remark by Hempel
on explanation and unification is very much of a piece with Sterling and
Laughlin’s stated aims:

They list ten such principles: “compute with chemistry; compute directly with analog
primitivies; combine analog and pulsatile processing; sparsify; send only what is needed;
send at the lowest acceptable rate; minimize wire; make neural components irreducibly small;
complicate; adapt, match, learn, and forget.” (Sterling and Laughlin, 2015, ii)
This sentiment is echoed by (Marcus and Freeman, 2015, xii), quoted at the start of Section 4.3.
As it happens, one ongoing project in retinal anatomy that has received much attention (and
criticism) is Sebastian Seung’s crowdsourcing challenge to get the complete wiring diagram
(connectome) of the mouse retina. Much criticism has focussed on the issue that there is so
much difference in the detailed anatomy even amongst individuals of the same species, that a
dense reconstruction of the wiring cannot be practically or theoretically informative. But see
Kim et al. (2014).
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What scientific explanation, especially theoretical explanation,
aims at is not [an] intuitive and highly subjective kind of
understanding, but an objective kind of insight that is achieved
by a systematic unification, by exhibiting the phenomena as
manifestations of common, underlying structures and processes
that conform to specific, testable, basic principles. Hempel (1966,
83), quoted by Kitcher (1981, 508).

I should note, however, that Sterling and Laughlin’s declared inspiration
is not twentieth century philosophy of science but the unsurpassed sub-
sumption of disparate data under unifying theory that was afforded by the
theory of natural selection (Sterling and Laughlin, 2015, xiv). Moreover, the
explanatory sufficiency of efficient coding reasoning does not thereby stand
and fall with the covering law and unificationist model of explanation. As
I have been careful to point out, efficient coding explanations satisfy the
requirement of answering w-questions which many critics of covering-law
explanation subscribe to.

4.2 Forward Engineering

Sterling and Laughlin’s goal is to reverse engineer the brain. They do not
discuss ways that the efficient coding approach could be applied beyond
basic neuroscience, in neuro-inspired technologies and bio-engineering
involving the brain. However, this is an increasingly active field of research
and it is interesting to see how efficient coding explanations play a role in
it.

More specifically, the concepts of efficient coding explanation—e.g. con-
straints, trade-offs, efficiency, redundancy and optimisation—come ulti-
mately from engineering. While computational neuroscientists are taking a
design stance to neuro/bio systems and doing the reverse engineering, the
principles that they formulate or discover (see footnote ) will often apply
equally to man-made systems and biological ones. This is necessarily the
case when the principle in question is a result derived from information
theory or any kind of mathematical or statistical argument. The trade-offs
revealed by the mathematical analysis of information transmission can be
thought of as design constraints that an information engineer ought to be
conscious of, and knowledge of biological “solutions” frequently inspires
better design. So even when trade-offs, such as the one between redundancy
and robustness, cannot themselves be subject to intervention, knowledge of
those trade-offs can has very direct practical application.

One of the motivations for studying the coding schemes which allow
the brain to process information with much less power consumption than
artificial computers is in order to design computers which are themselves
more efficient. Rahul Sarpeshkar, whose hybrid coding argument was
discussed above, is himself an electronics engineer with a research focus
on low-power biology-inspired computation. For example, his ideas have
applications in the design of implantable medical electronics such as
sensory-substitution devices (Sarpeshkar, 2010).

In the field of vision science we see the influence running from engineer-
ing to neuroscience and back again. We saw in our case study of lateral
inhibition, neuroscientists borrowed concepts from signal engineering and

There is a parallel here with work in synthetic biology. See Knuuttila and Loettgers (2013a) and
Knuuttila and Loettgers (2013b)
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information theory in order to explain their observations. From the 1970’s
onwards there have been concerted efforts to design algorithms which
will give computers or robots functioning vision. Though Marr (1982)
famously argued that computer vision research was best off proceeding
independently of visual neuroscience, bracketing questions about neural
implementation, I think we should understand this as a warning against
focussing on irrelevant mechanistic issues. For in Marr and Hildreth
(1980) much attention is paid to the comparison between their Laplacian
of Gaussian filter and empirical findings in psychology and neuroscience
about the workings of the early visual system, where these findings are
concern the abstract coding schemes employed here rather than detailed
anatomy or physiology.

Another example is the use of the Gabor function to model of neurons
in primary visual cortex [see Chirimuuta (2014, §5.2) and Chirimuuta
(forthcoming, §3)]. The introduction of the function, borrowed from mid-
twentieth century communications engineering, was justified by Daugman
(1985) as the optimal solution to the joint problem of decoding both spatial
location and spatial frequency (width of edge) information. John Daugman
is himself a computer scientist who has sought to design better image
recognition algorithms on the basis of his study of visual cortex.

Furthermore, the engineering approach can also be applied to the
manipulation of the brain itself, not just in the building of artificial
devices. Neuro-engineering is a fast growing field of activity involving
the development of brain computer interfaces (BCI’s) which read off and
decode neural activity in order to control external devices such as computers
and robotic limbs, or to channel information directly into the brain. In
order for such technologies to be effective, the brain’s activity must be
understood in abstract enough terms to allow for translation to and from
digital computers. That is, the “neural code”—the information conveyed
by particular patterns of activity—must be deciphered and manipulated
in a way that is independent of the specific biological implementation
(Chirimuuta, 2013). This is why abstraction from mechanistic details, and
recourse to rarefied mathematical descriptions of signals is particularly
useful here. Yet in order to build an effective BCI, a brilliant decoding
algorithm is not enough. One also needs an electrode implant in the cortex
which has long term stability and does not quickly lead to degeneration of
the neural tissue in which it is embedded. Of course this requires precise
anatomical knowledge of the cortical layers, knowledge of the biochemical
environment, and of neural cell death cascades—in other words, a detailed
mechanistic understanding of the brain. In short, this is a field of endeavour
in which mechanistic and efficient coding knowledge are both integral to its
success.

4.3 Defining Neural Computation

It is uncontroversial, amongst neuroscientists, to say that the brain computes
(Koch, 1998, 1). And it is by now well established that the brain does not
compute in the same way that a general purpose digital computer does,
or in the fashion of any known analogue machine. I concur with Piccinini
and Bahar (2013, 476) that neural computation is sui generis. The tricky

Note also that computer vision algorithms which employ lateral inhibition—e.g. by using the
DoG function—are quite commonly used. See Klette (2014, 75-76), Moini (2000, 18-19), and
Lyon (2014) on the invention of the optical mouse.



conclusion 21

thing is then to put some useful definitions in place which will help clarify
what is or should be meant by neural computation, and there is not yet
a consensus emerging from the discipline of theoretical neuroscience. As
Marcus and Freeman (2015, xii) write, “we have yet to discover many of
the organizing principles that govern all that complexity. We don’t know,
for example, if the brain uses anything as systematic as, say, the widespread
ASCII encoding scheme that computers use for encoding words. And we are
shaky on fundamentals like how the brain stores memories and sequences
events over time.”

Piccinini and Bahar (2013, 477-9) assert that computation is a kind
of “mechanistic process”, and thus that the empirical study of neural
mechanisms, and the search for mechanistic explanations of the brain
and psychological states, will eventually lead to an understanding of
neural computation. I believe that this approach is misguided. As
we saw in the case study of lateral inhibition, any restricted focus on
the mechanistic details giving rise to inhibitory effects would not be
illuminating as to the computational properties of the circuit. For one
thing, the search for mechanistic explanations does not draw from the
theoretical frameworks in engineering and mathematics which can be
used to characterise computational systems. For another, the mechanistic
perspective obscures the interesting commonalities amongst biophysically
very different systems. It was only by taking the efficient coding perspective,
and asking in abstract terms what function the circuit performs and why,
that hypotheses could be formed about what coding scheme is implemented
in these systems.

In order to make progress towards a definition and theory of neural
computation, general coding schemes and unifying principles are far more
valuable than a disunified collection of data concerning mechanisms in the
brains of different animals. This requires that scientists work with a “level
of description” which is abstracted from that of mechanistic implementation
[cf. Marr (1982); Carandini (2012)], and is assumed in the efficient coding
tradition. One idea along these lines which has recently been attracting
attention is that of canonical neural computations (Carandini and Heeger,
2012). These are computational operations which are frequently used to
model small circuits and are found to reoccur in different species and brain
regions. The DoG model of lateral inhibition would be an example, and
they are commonly invoked in efficient coding explanations (Chirimuuta,
2014). Carandini and Heeger’s proposal is to identify a handful of such
computations which might be thought of as the building blocks for more
complex neural computations. If the project is successful, the result will be
a clearly articulated theory of neural computation.

5 conclusion
In this paper I have charted the development of efficient coding explanations
of a well known neural phenomenon, and discussed practical applications of
these and other models and explanations. I have been somewhat diffident
about the causal/non-causal distinction because in practice these aspects
of efficient coding explanation are integrated and complementary to one
another. What is more significant is the difference between efficient coding
and mechanistic explanation, since each approach reveals and obscures

But see Koch (1998) for a hybrid computatational-mechanistic approach.
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different aspects of a neural system. For example, efficient coding models
tend to mask the bio-chemical intricacy of the brain’s ‘circuits’, treating them
more like arrays of electronic switches. As a result, such models do not play
a role in the development of pharmaceuticals to alleviate organic diseases
affecting brain cells; they do make a difference, however, in the design of
prosthetic systems which aim to replace lost neural tissue. More generally,
they have an important place in tasks where ‘big picture’ ideas about the
system’s function are needed.

Throughout this paper I have emphasised the extent to which the efficient
coding framework draws from the theories and concepts of communication
engineering. I would like to finish with the caveat that this analogical
approach to understanding the brain brings with it its own limitations. Both
neuroscientists and philosophers of neuroscience should be aware of the
ways in which the analogy between the brain and a man-made computer
or signalling system can break down. As (Barlow, 2001, 244) puts it, “[i]n
neuroscience one must be cautious about using Shannon’s formulation of
the role of statistical regularities, because the brain uses information in
different ways from those common in communication engineering.” The
challenge is to find out exactly how the brain uses information, and what
“information” is in the context neuroscience rather than engineering. The
efficient coding approach is just a starting point.
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